NAVAL POSTGRADUATE SCHOOL
Monterey, California

&

AD-A223 925

THESIS

TURBO PASCAL IMPLEMENTATION OF A DISTRIBUTED
PROCESSING NETWORK OF MS-DOS MICROCOMPUTERS
CONNECTED IN A MASTER-SLAVE CONFIGURATION

by
NELSON C. ARD

DECEMBER 1989

Thesis Advisor:

Uno R. Kodres
Approved for public release; distribution is unlimited

90 07 3 208

Unclassified
SECURITY CLASSIFICAT ON OF TH'S PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS
nrestri

2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION - DOWNGRADING SCHEDULE

Approved for public release; distribution
is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

7a. NAME OF MONITORING ORGAN:ZAT:ON

(If applicable)
Naval Postgraduate School 52

6c. ADDRESS (City, State, and ZIP Code) 76 ADDRESS (Crty, State, and ZiP Code)

Monterey, CA 93943-5000

Ba. NAME OF FUNDING - SPONSORING
ORGANIZATION

B8b OFF:CE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢ ADDRESS (City, State and ZIP Code) 10 SOUJRCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO NO NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

TURBO PASCAIL IMPLEMENTATION OF A DISTRIBUTED PROCESSING NEIWORK OF MS-DOS MICROCOMPUTERS
QONNECTED IN A MASTER-SLAVE CONFIGURATION

12 PERSONAL AUTHOR(S)
Ard, Nelson C.

13a TYPE OF REPORT “3b T'MEt COVERED 14 DATE OF REPORT (Year, Month, Day) ‘S PACE COUNT™
Master's Thesis FROM 10 December 1989 308

6 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S.

onzerment

©7 COSA™I CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Distributed Processing, Local Area Network, Star Network,

Turbo Pascal

5 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis describes the design and implementation of a distributed processing network
of IBM PC campatible camputers capable of performing parallel processing tasks. The
network is a star cluster local area network, with the central camputer controlling the
operations of the satellite camputers on a sequential basis.

The local area network software operates over the camputer's standard RS-232C cammini-
cations ports, and is currently implemented to allow the central camputer to operate two
satellite computers. Processing tasks are dispatched to the satellite camputers as
programs which run to completion on the satellite computers. Utility programs within the
scftware include file and message transfer to start the programs on the satellite
camputers and to obtain the output of the remotely executed program, configuration
utilities to set the communications port parameters, and windowing utilities for dlsplay
of information normally presented on the remote camputer's display. The program is
implemented in Turbo Pascal 4.0 under the MS-DOS operating system, version 3.21. \

20 DSTRIBUTION AvA (A8 7Y OF LESTRACT 21 ABSTRACT SECURITY CLASSIFCATION /
@B orciassisEdLnov i O sate as et] oric useRs Unclassified e

222 NAMIE OF RESPONS-BLE NDiVIDUAL j oy 2R MTEPHDNE (include Area Code) | 21¢ OFFCE SYMBOL
Professor Uno Kodres/ T (408) 646-2197 52Kr

DD Form 1473, JUN 86 Previous editions are obsolete SECUR T7 (LASSE CAT.ON OF Tmy 2aCE

Uncla551 fied

iy

S/N 0102-1.F-014-6603

) /{ i
/:‘ . y
) k‘ A ‘. /)m},ﬁ/‘r‘f“. I N

Approved for public release; distribution is unlimited.

Turbo Pascal Implementation of a Distributed Processing Network of
MS-DOS Microcomputers Connected in a Master-Slave Configuration

by

Nelson C. Ard
B.S., Virginia Polytechnic Institute and State University, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
DECEMBER 1989

AN
Author: el). &, N,

AN
Nelson C. Ard \\

L A /éoat’w

Approved By:

Uno R. Kodres, Thesis Advisor

—

52 7 G

Second Reader

@u@%ﬁ}u

Fobert G. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

This thesis describes the design and implementation of a
distributed processing network of IBM PC compatible computers capable
of performing parallel processing tasks. The network is a star cluster
local area network, with the central computer controlling the
operations of +the satellite computers on a sequential Dbasis.

The local area network software operates over the computer's
standard RS-232C communications ports, and is currently implemented to
allow the «central computer to operate two satellite computers.
Processing tasks are dispatched to the satellite computers as programs
which run to completion on the satellite computers. Utility programs
within the software include file and message transfer to start the
programs on the satellite computers and to obtain the output of the
remotely executed program, configuration utilities to set the
communications port parameters, and windowing utilities for display of
information normally presented on the remote computer’s display. The

program is implemented in Turbo Pascal 4.0 under the MS-DOS operating

system, version 3.21.

Accession For N
NTIS GRA&I
DTIC TAB
Unannounced 0
Justification ___
By
Distrivuti-ny

4

DISCLAIMER

The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of
Defense or the U.S. Government.

Several of the terms wused in this thesis refer to commercial
products for which the manufacturer or vendor holds a trademark. All
registered trademarks appearing in this thesis are cited below with the
firm holding the trademark in lieu of citing the holder with each
individual occurance of the trademark.

Bell Laboratories, Murray Hill, New Jersey
UNIX Operating System

Board of Regents, University of California at San Diego (USCD), San
Diego, California
UCSD Pascal Programming Language

Borland International, Incorporated, Scotts Valley, California
Turbo Pascal Programming Language

Digital Research Incorporated, Pacific Grove, California
Control Program/Microprocessor (CP/M) Operating System

International Business Machines Corporation, Boca Raton, Florida
IBM PC Personal Computer
IBM PC/AT Personal Computer

Microsoft Corporation, Bellvue, Washington
Microsoft Disk Operating System (MS-DOS)

RR Software Incorporated, Madison, Wisconson
JANUS/Ada Programming Language

United States Department of Defense
Ada Programming Language

Zenith Data Systems Corporation, St. Josephs, Michigan
Z-248 Personal Computer

iv

TABLE OF CONTENTS

I. INTRODUC TION i i ittt iristensannnonansnenannns 1
A. BACKGROUNDttt iiiiiienniinnanaseasaeannses 1
B. PROJECT DESCRIPTION¢¢tiiiiinetnnannenoeannans 1

1. Target Hardwarec¢c0ciiiierennnnnnnnns 1
2. Network Topology it 2
3. Network Media i, 2
4. SoftWare ... e e e e 2
a. Operating System 2
b. Programming Language00, 2
5. Proposed Capabilities, 2
a. File Transfer it iniiinrinrennn 2
b. Distributed Processing, 2

c. Control of Multiple Slave Microcomputers 3

d. Remote Login0 iiiiiinrneninennn 3

e. Error Handling 00 iiiininnnnn 3

C. STRUCTURE OF THE THESIS it 3

I1. HARDWARE ... i e e e e e e s 5
A. THE 1IBM PC/AT PERSONAL COMPUTER 5

1. The Central Processor Unit 5

2. Interrupts e e 7

J. Communications Ports oo, 8

4. Programmable Interrupt Controller (PIC) 10

ITI. THE OPERATING SYSTEMitititiniinnernninnannanannnnns 12

A. BACKGROUND ..., .. ittt ittiteee ettt nnannes 12
B. CHILD PROCESSES ...ttt iniattetennsessanuansenns 14
1. Program Segment Prefix it 14

a. Interrupts to be Restored on Program

Terminationiiiiiiiiiiiiiinnrnnonas 15

b. The Environment Segment Addrezs 15

c. File Handle Tablecciiieiinennen. 16

d. Redirection i, 17

C. PROGRAM TERMINATIONttt ittt ianenenronrannnsnns 19
Iv. THE PROGRAMMING LANGUAGEitiitiiitieeetnnnanennns 20
A. JANUS ADA ... i i et e, 21
1. Memory Size Limitations of Compiled Code 2]

2. Failure of the Child Process Call 23

3. Need for a Replacement Language 25

B. TURBO PASCAL ...ttt i et eaasa i inna e 25
1. Information Hiding 26

2. Support for Child Processesc0..n. 26

3. Data Abstractiont 26

4. Unit Initialization i 27

5. Unit Exit Procedurescoitiiieirnnnnnns 27

6. Absolute Variables i, 27

7. File Input and OQutput iiiiiiiininans 27

8. Port Read/Write .; 28

9. Interrupt Service Routines 28

10. Exception Handling iiiininn.n 28

11. High Level Software Interrupt Procedure............

12. ROM BIOS and Hardware Interrupt Procedures

13. Support for a Larger Memory Model

c. IMPLEMENTATIONttt iiiiinnnnnaanennnens
THE IMPLEMENTATION iiiiiiiiiinteinntenrnnas
A. THE BARDWARE CONFIGURATIONccociiiiivinnnn,
B. SOFTWARE CONFIGURATION ¢t tiiniireennnnnnenennn
1. The Operating System i

2. The Distributed Processing Program

3. ZCOPY File Transfer Program00nnn

4. Software Maintenance i,

a. Configuration,

b. Software Modification

c. SYSTEMS DESIGNottt itriitin et
1. The Command Parserciiiiiieinininnnan

2. The Execution of Child Processes

a. Internal Commandsc.vniviunnnnn.nn

b. External (Executable) Commands

3. Redirection i i e

4. File and Command Transfer via Xmodem

5. Serial Communications i,

6. Man Machine Interface i,

D. DESIGN CONSIDERATIONS, ...t iiieriiiieniaannn
1, Assembly Language i,

2. ROM BIOS Software Interrupts

3. Memory Management oo,

vii

4. Synchronization i ittt 39
5. Modular Programmingcccievenecancnnenan 39
6. Pregervation of Interrupt Vectors on Program
Termination i e 40
SYSTEM EXECUTIONciiiiiiiiinnrinnnnnnnnanans 40
1. Initialization i, 40
2. Slave Operationiitiiiuensannorosnn. 41
3. Magster Operationciiiiieiiiiianrenn. 41
a. Terminal Operations 42
b. Port Initialization 43
c. Remote Login to Slavec.ccn... 43
d. Remote Program Execution 43
e. Flow Controliciiuiriinennennnnnn 44
f. Remote Reset i i, 44
g. File Transfer i 44
THE MODULES ...ttt ittt i i 45
1. Distrib ... e 45
2. DataComt i i e s 45
3. Director 45
4. ErrorCod i e e e 46
5. General ...t i e i e e s 46
6. MiscPack i i 46
7. Parser ... i i i e 46
8. Redirect i e 47
9. 23 o 2 47
10, Support .. e e e 47

VI. CONCLUSIONS

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

11 Wndow ... e i e i e 47
12, Xmodm ... i e et 48

.. 49
OPERATOR’'S MANUAL ittt ittt eienaaanes 51
INSTALLATION/PROGRAMMING AIDS0 58
XMODEM PROTOCOLttt ittt it iisannns e nannann 64
MAINTENANCE MANUAL FOR DISTRIB PROGRAM 69
MAINTENANCE MANUAL FOR UNIT DATACOM 81
MAINTENANCE MANUAL FOR UNIT DIRECTOR 93
MAINTENANCE MANUAL FOR UNIT ERRORCOD 96
MAINTENANCE MANUAL FOR UNIT GENERAL 97
MAINTENANCE MANUAL FOR UNIT MISCPACK 100
MAINTENANCE MANUAL FOR UNIT PARSER 101
MAINTENANCE MANUAL FOR UNIT REDIRECT 106
MAINTENANCE MANUAL FOR UNIT SPAWN 111
MAINTENANCE MANUAL FOR UNIT SUPPORT 114
MAINTENANCE MANUAL FOR UNIT WNDOW 120
MAINTENANCE MANUAL FOR UNIT XMODM 126
SOURCE LISTING FOR UNIT DATACOM 136
SOURCE LISTING FOR UNIT DIRECTORcovv... 156
SOURCE LISTING FOR UNIT ERRORCOD 162
SOURCE LISTING FOR UNIT GENERALccvunn.. 166
SOURCE LISTING FOR UNIT MISCPACKc.o.unn. 171
SOURCE LISTING FOR UNIT PARSERccniuiininnnn 174
SOURCE LISTING FOR UNIT REDIRECTcivuinnnnn 186
SOURCE LISTING FOR UNIT SPAWNciuiinniinn 196

ix

APPENDIX X SOURCE LISTING FOR UNIT SUPPORTc.cccuunnn 203

APPENDIX Y SOURCE LISTING FOR UNIT WNDOW 226
APPENDIX Z SOURCE LISTING FOR UNIT XMODM c0vtn 243
APPENDIX AA SOURCE LISTING FOR PROGRAM DISTRIB 270
APPENDIX AB CONFIGURATION FILE STRUCTUREc.vvnunnnn 301
APPENDIX AC DOCUMENTATION FOR ZCOPY PROGRAM 302
LIST OF REFERENCES ittt it e tteeeeaeen 304
INITIAL DISTRIBUTION LIST iiiiiiiiiiiiiineniaiaannes 306

ACKNOWLEDGEMENTS

Special mention i8 due to the following individuals who provided
solutions to some of the technical problems encountered in the
implementation of this thesis, as well as their kind permission to

reprint their work as program excerpts used in the thesis.

Diplomate Physics Christian Boettger

Institut fuer Metallphysik und Nuklear Festkoerperphysik der
Technichen Universitaet Braunschweig

Bundesrepublik Deutschland (West Germany) FRG

Reino R. A. de Boer
Erasmus Universiteir Rotterdam
The Netherlands

Naoto Kimura
California State University, Northridge (CSUN)

Alexander Verbraeck

Delft University of Technology
Department of Information Systems
The Netherlands

My greatest thanks are due, of course, to my wife Michelle for her

loving support during this entire process.

X1

I. INTRODUCTION

A. BACKGROUND

Many designs for local area networks are currently available on the
commercial market, however, all are designed to provide for sharing of
high performance centralized assets such as file servers or relatively
scarce resources such as specialized printers; or for the movement of
data and files. None are known to provide a distributed processing
capability by using the inherent capabilities of the attached
microcomputers or processors under the control of a zentral master
computer.

The purpose of this thecis is to demonstrate such a capability in a
laboratory environment, utilizing & network of slave or server
microcomputers capable of running separate applications programs under

the cortrol of a centreal or master microcomputer.

B. PROJECT DESCRIFTION
1. Target Hardware
The proposed demonstration network consists of a single master
IB® FC compatible microcomputer connected to two IEBM FC or IBM FC/AT
compatible slave microcomputers under the operational control of the

central master.

2. Network Topology
The proposed demonstration network is a small star network,
with the master microcomputer as the central node.
3. Network Media
The proposed networking media shall be the standard RS-232C
serial communications port provided with each microcomputer. The
central microcomputer is augmented with a second RS-232C serial port to
allow independent communications with both slaves.
4, Software
a. Operating System
The operating system selected for the microcomputers
shall be Microsoft MS-D0OS, version 3.0 or later, as supplied with each
microcomputer,
b. Programming Language
All applicetions software for the microcomputer control
programs was oricinally intended toc be written in RR Software Inc.
Janus/ADA. Tre actual implementation 1s in Borland Turbo Fascal,
versior 4.0.
S. Proposed Capabilities
a. File Transfer
The master microcomputer shall be able to 1initiate
program and data file transfers to and from any of the connected slave
microcomputers.,
b. Distributed Processing
The master microcomputer shall be able to command the

exeZvtion cof selected programs resident on any slave mcrocomputer,

[

receive an acknowledgment of the command from the slave, and receive
the text output of the selected program after execution.
C. Control of Multiple Slave Microcomputers
The master microcomputer shall be able to control more
than one slave microcomputer.
d. Remote Login
The master microcomputer shall be able to remotely log in
to any slave microcomputer and operate it remotely over the
communications network.
e. Error Handling
The master and slave microcomputers shall attempt to

recstore communications to resume control in the event of a fault.

C. STRUCTURE OF THE THESIS

Since standardized microcomputers and operating systems were
celected, the majority of thies thesis consists of the programming
effort to create the network control programs, and the source code for
those programs. What follows will describe the design considerations
predicated by the choice of hardware, operating system and programming
languages; & description of the significant problems encountered: and
instructions for duplicating the network along with program operation
and maintenance.

Chapter II will describe the programmer 's model of the hardware
utilized 1in the microcomputers and interrupt driven serial
communication considerations. Chapter I1l will discuss the essential

features of the operating system &5 they contributed to the thesis.

Chapter IV will describe the salient features of the two programming
languages considered, and the reasons for selecting a replacement for
Janus/ADA. Chapter V will discuss the implementation from a systems
viewpoint with a brief description of each software module. Chapter VI
summarizes the conclusions reached from this thesis.

The appendices provide detailed descriptions of the program source
code, the source listings, an operator’'s manual, a guide to program

maintenance, and the bibliography.

II. HARDWARE

A. THE IBM PC/AT PERSONAL COMPUTER
The 1BM PC/AT personal computer and its close compatibles, such as
the Zenith 7-248 adopted as the standard Navy desktop personal
computer, were selected as the target hardware for both program
development and application. These computers are general purpose, and
typically have at least 640K of random access memory for operating
system and program execution, one or more floppy disk drives handling
S-1/4 inch diskettes with 360k bytes of storage each, a hard disk drive
holding from ten to twenty megabytes of storage, and a monochrome or
color monitor displaying 80 characters by 24 lines of text. One
RG-2I2C serial interface 1is standard, and a second is optional. The
computer also comes with a parallel printer port, The following
nardware features are of interest to aid in understanding the software
developed: (Norton, 1985, pp. 19 - 65)
1. The Central Processor Unit
The programming model of Table 2.1 is common to the Intel
B0OE8, 8086 and B0xB& series of microprocessors used in the IEM PC/AT
compatibles. This information is not provided to support assembly
language programming (there is very little in this implementation), but
for interface considerations to control, read from, write to, or obtain
the status of the IBM PC hardware in support of the distributed

processing network. The usage of specific registers for software

interrupts is defined by calling conventions similar to the formal
parameter declarations for procedures and functions in higher level
languages such as ADA.

TABLE 2.1

MICROPROCESSOR REGISTERS

Register Type Function

Scratch Fad Registers: Arithmetic and data transfer
Ax Accumul ator Arithmetic operations

BX Rase Table pointer

CX Counter Repetition loop

DX General General purpose

The above registers may also be addressed as eight bit pairs, i.e.,
register AX may also be utilized as AL and AH for the low and high
order bits.

Segment Registers: Separate code, data, stack and an
extra segment

Ccs Code Segment Locates the code segment in memory

ps Data Segment Lacates the data segment in memory

€5 Stack Segment Locates the stack segment in memory

ES Extra Segment Intersegment transfers

Inde: Registers: Relative offset from a segment
regicter

IF Instruction Foints to next instruction to be

Pointer erecuted

SF Stack Fointer Foints to next available location on
stack

EF Ease Fointer Offset into the stack segment

DI Destination Index String data transfers

S1 Source Index String data transfers

Control Functione:

Flags Fleg Register Used to record processor status
information

2. Interrupts

Interrupts serve two functions in the IBM FC: hardware
interrupts allow a peripheral to request servicing from the CFU, and
software interrupts allow the operating system or applications software
to obtain services from the hardware. Software interrupts are
generated by a machine instruction. In either case, a software or
firmware interrupt service routine must be called to process the
request. The originator of the interrupt does not need to know the
address of the routine that accomplishes the service, since the IBM PC
incorporates a powerful feature designed to minimize limitations in the
inherent desigrn. A level of indirection is designed into the interrupt
architecture of the microcomputer that <facilitates redefining the
interrupt service routines without rewiring the hardware or changing
firmware. This is accomplished through a table of interrupt vectors
resarved at the first 1024 bytes of system memory. Each of the 256
vector locations is a four byte pointer initialized to point to a
specific fumction by its location in the table. These functions
support hardware and scoftware interrupts generated by the CFU (for
fault processing), the hardware (for peripheral service), or the
operating system or application program (for higher level services).
Control is passed to an interrupt service routine by utilizing the
vector at the location assigned to that function to call the service
routine. By reassigning these vectors through the operating system,
the interrupt service routines normally found in the microcomputer
firmware may be substituted by another portion of ROM, the operating

system or the applicetion program itself.

As an example, the dynamic assignment of interrupt services
was utilized to obtain interrupt driven character receive functions in
the distributed processing network. Two hardware interrupt vectors
pointing to interrupt service routines for the communications ports are
assigned to the interrupt vector table at offset $0B for port two
(logical port COM2), and at offset <$0C for port one (logical port
comMi) ., The distributed processing program developed for this thesis
reassigns the indicated vectors to point to interrupt service routines
contained 1in the thesis program itself. These vectors are restored to
their previous values on program termination. (Edwards, 1987, p. 195)

3. Communications Ports

The IBM PC is inherently capable of handling up to seven
communications ports, but typically 1s fitted with only twe at
stardardized hardware addresses: lopgical ports COM1 and COMZ. These
are capable of data rates ranging from 110 to 38,400 baud; however the
microcomputer ROM Basic Input Output System (BIDS) servicing the ports
is only capable of setting speeds up to 9600 baud through service
interrupt #14. This <cervice interrupt was also replaced by the
application program to set the ports and achieve a finer degree of
control over their operation than afforded by the RIOS or the operating
system. TJable 2.2 is correct for an IBM PC (or Zenith 7-248) fitted

with two ports (Edwards, 1987, p. 231):

TABLE 2.2

COMMUNICATIONS PORT ADDRESSES

comM1/comM2

Register Address Function

Transmit Holding $3F8/$2F8 Contains the 8-bit character to be
transmitted by the port. This is a
write only register.

Receive Buffer $3FB/$2F8 Contains the byte most recently
received by the port. This is a read
only register.

Interrupt Enable $IFQ/$2FF A 4-bit register that enables the
serial port to generate interrupts to
the computer when any of the
following events occurs.

Bit 0: Interrupt when data are
available to be received.

Bit 1: Interrupt when the transmit
holding register is empty.

Bit 2: Interrupt when the line
status register changes
state.

Eit I: Interrupt when the modem
status register changes
state.

Line Status FIFD/¥2FD Frovides information about the status
of data transfer.

Bit 0: Data ready to be received.

BRit 1: Overrun error

Bit 2: Parity error

Bit 2: Framing error

Bit 4: Break detected on the line

Bit 5: Transmit holding register is
empty

Bit 6: Transmit shift register is
empty

Bit 7: Always zero

Modem Status $£IFE/$2FE Contains the status of the modem

signals
Bit 0: Delta clear to send

Bit 1: Delta data set ready

RBit 2: Trailing edge ring indicator
Bit T: Delta line signal detect

Rit 4: Data set ready

Bit 5: Data set ready
Rit 6: Ring indicator
Fit 7: Receive line signal detect

Line control $2FB/$2FRB Used to configure the data
communications parameters.
Bits 0 - 1: Word length (bits):

0 =25

1 =6

2=7

3=8
Rit 2: Stop bits:

0 =1

1=2
Bit 3: Enable parity
Bit 4: Select even parity
Bit S Mark/space parity select
Bit 6: Generate BREAK signal
BRit 7: Divisor latch access

Modem control FIFC/$2FC Allows access to the signals used to

communicate with a modem

BEit 0: Data terminal ready

Bit 1: Request to send

Bit 2: Qutl

Bit J: QDut2. Must be set to enable
UART interrupts

Bit 4: Loopback

4, Programmable Interrupt Controller (PIC)

Another programming requirement involved enabling the IBM FC
hardware to recognize receive character interrupts generated by the two
UARTs. All hardware interrupts are prioritized for the CPU by a device
called the Frogrammable Interrupt Contrcller. The Intel 8259
Frogrammable Interrupt Controller is capable of prioritizing up to
eight interrupts, identified as IRGO through IRB7, with IRGO being
assigned the highest (preemptive) priority. The programming
requirements are to set the appropriate mask bits in the Interrupt Mask

Register of the FIC, and to send an End Df Interrupt command to the

device following completion of the interrupt service routine supplied

10

by the thesis program. Communications port one is assigned interrupt
vector IRE3Z (bit 3), and communications port two has IRQ4 (bit 4). The
B259 can be instructed to recognize or ignore interrupts from a
peripheral by clearing or setting the appropriate bit in the Interrupt
Mask Register located at 1/0 port #21, and this feature was utilized to
disable ports when not in use. End 0Of Interrupt commands are sent to

I/0 port $20. This relationship is summarized below (Greenberg, 1987,

pp. 46-50):
TABLE 2.3
FROGRAMMAELE INTERRUFT CONTROLLER ADDRESSES
Register Address Function
interrupt Mask $21 Contains the mask for the currently
enabled interrupts (read/write’
Eit Z: IRQ3Z - Com port 2 mask.
Clear to enable the port
interrupts
Bit 4;: 1IRR4 - Com port 1 mask.
Clear to enable the port
interrupts
In Service $20 Write to the same bit as enabled 1in

the Interrupt Mask register to clear
the interrupt.

III. THE OPERATING SYSTEM

-

Microsoft MS-DOS version 3.21 was provided with the microcomputers
used in this thesis, and provides the traditional functions expected in
an operating system: high level interface for applications programs,
file services, memory management, and input/output services (MS-DOS
Reference Guide, 1986, pp. 2.7 - 2.9). The use of a standard operating
system was desirable, as it allowed a piece of "trusted" software to be
utilized for most of the distributed processing functions while
providing a familiar environment for the operator. Certain extensions
tc the operating system were constructed in software, to facilitate the
execution of programs on the microcomputers and to complement the
extensions in hardware services discussed earlier. These are discussed

below.

A. BACKGROUND

MS-DOS interfaces gdirectlv with the hardware implementation
dependent portion of the IBM FC compatible microcomputer, the ROM Basic
Input Output System (BIDS). Recall that this RIOS provides a logical
interface and some low level services +for the underlying hardware,
including the disk drives, serial communications ports, keyboard and
video display. The ROM RIOS also accomplishes the initialization of
the IEM FC on power up. The ROM EIOS services remain available to the
programmer through i1nterrupt service calls. (Norton, 1985, pp. 44 -

4%

The portion of MS-DOS that interfaces with the ROM BIOS is
contained in a file called 10.8SYS, located on the media supplied with
the operating system. This file contains extensions and in some cases
replacements to the ROM BIOS services supplied with the computer such
as device drivers for mouse input devices or specialized video displays
not available when the design for IBM PC compatibles was standardized.
On initialization, I0.SYS substitutes the replacement interrupt service
routines for the existing ROM BIOS services by simply changing the
interrupt table vectors to point to the new routines in memory. This
facility allows the manufacturer to tailor a standard operating system
to various hardware manufacturer’'s microcomputers. A caution on the
mearnz to change ttese interrupt vectors is noted below. (MS-DOS
Reference Guide, 198&, pp. 2.5 - 2.6

The nevt file 1loaded 1s MSDOS.SYSE, which provides hardware
1ndependent services for the operating system, 1i.e., high level
interface for file services, memory managemernt, and i1nput/output
services. This portion includes the handler for a class 0f cservice
requests, called DOS furctior requests, wutilized in the distributed
processing program to losd and execute programs external to the
operating system and input/output redirection to implement the

capabilities cited 1n Chapter I. (MS-DOS Reference Guide, 1986,

The 1last portion of the operating system loaded is COMMAND.COM,
which builds on the previous lavers to provide the familiar commang
line interpreter and MS-DOS resident commands such as COFY and DIFR.

(M3-DOS Reference Guirde, 1986, pp. 2.7 - .9

The use of +function calls to change the interrupt vector table
providing ROM RIOS, I10.S5YS and MS-DOS interrupt services 1is strongly
encouraged by Microsoft to prevent accidental or malicious corruption
of data structures within the operating system and the vector interrupt
table. It is also intended to allow backward compatibility for future
releases of the operating system that may include multitasking.

{MS-DOS Reference Guide, 1986, p. 6.7

B. CHILD PROCESSES

The ability of the operating system to spawn a local process and
regain control after execution is an essential element of the
distributed processing network. MS-DOS Function Request 4BH 1is
utilized to load ancother program intoc memory and begin execution,
Frograms executed from the Command.Com command line prompt are executed
as child processes of the operating system in exactly the same way.
Trnie function provides for the execution of programs and for the remote
lngin capability required by the network. Several details of the
ME-DOE cperating system capability were of interest in this thesis.
(MZ-DOS Reference Guide, 198&, pp. 3.1 - 2.9)

1. Program Segment Prefix

Whern & child process is created, the M5-DOS operating system

finds the lowest available segment address to use as the start of
program memory for the spawned process, and builds a 256 byte control
block called the Frogram Segment Frefix (PSF) at offset zero within
that segment. The executable program immediately follows. While

Microscft coes not officially document the use of certain fields within

14

the PSP, sufficient information was collected from the MS-DOS Reference
Guide and other sources to manipulate the environment created for the
child process to accomplish the goals of the distributed processing
program.
a. Interrupts to be Restored on Program Termination

The interrupt vector table pointers for three essential
interrupts are placed in fields of the FSP of the spawned process prior
to execution. Thzse are restored on program termination to insure that
the interrupt vector table is not corrupted should the child process
replace the vectors for its own wuse and then terminate abnormally.
These are: The Terminate Handler Address containing the address of the
operating system routine that accomplishes program termination; the
Control-C falso known &s Control-Break) Address containing the address
ot the operating system routine that handles operator induced program
termination; anc the Fatal Error Handler Address used to process errors
that result in fatal program halts. (MS-DOS Reference Guide, 1986, pp.
7,85 - 1.9

b. The Environment Segment Address

The FSF contains & field that holds the segment address
cf the system ervironment. This environment 1is a series of ASCII
strings that may be used by programs to determine permissible
operations or values. These strings take the form variable = value,
and are terminated in a zero (0O} character. An example is the "FATH ="
environment variable used to set the search paths used by the command
processor Ccmmand.Com to locate an external command. The process’

current ervircnment 15 mace available by following this segment pointer

-
T

and searching the strings found at that address until a string with a
second terminating zero character is found. This facility is used by
the thesis program to locate a copy of the Command.Com on disk to run
batch programs (Edwards, 1987, pp. 286 - 288). Each child process
inherits a copy of the environment pointed to by the segment address of
its parent. This means that the child process mray manipulate its own
environment without disturbing that of its parent. It also means that
the parent may manipulate its own environment prior to spawning a child
process in order to communicate with the child or to restrict certain
environmental parameters from the child, although this communications
means is not reversible. (MS-DOS Reference Guide, 1986, pp. 2.6 - Z.7)
c. File Handle Table

Wher the FSF is constructed, the operating system places
a copy of all open file handles in a data structure of the type
FILEHANDLE = ARRAY [1..20] OF BYTE in the PSF (Greco, 1987, p. 2%5).
Each word in the table indexes another data structure internal to the
operating system that contains information needed to locate the file on
the disk system(s). This inheritance has the effect of passing all the
open files of the parent to the child. A file handle is a Unix style
16 kit word that is used to identify a file or a device known to the
operating system, and replaces the use of CF/M compatible File Control
Blocke for file references by the operating system (Simrin, 1988,
p. 204}, File handles allow the use of pathnames to open or create a
file. Once opened, the file handle is returned to the calling program

az the reference to the file. The first five files are opened by the

16

operating system and have special meaning: (MS-DOS Reference Guide,
1986, p. 5.9
TAEBLE 3-1

MS-DOS RESERVED FILE HANDLES

File

Handle Mnemonic Furpose Function

0 StdIn Standard Input Input can be redirected

1 StdOut Standard Qutput Qutput can be redirected

2 StdErr Standard Error Output cannot be redirected
Z StdAux ComMi I1/0 cannot be redirected

4 StdFrn Frinter I1/0 cannot be redirected

d. Redirection

Redirection refers to the ability of the input or output
tharacter stream associated with one of the reserved files above to be
rerouted te or from a different file. An example of this function ics
the use of redirection characters on the command line (<, >, >, or i),
wherr program output is redirected to a file or pipe, as in the command
line entry: PROGRAM > FILE. Wher the operating system opers the
Standard Error +file, it ic directed to the same device as the Standard
Output f:ile, the display conscle (logical device driver name CON), and
cannct be redirected on the command line as indicated in the table.
This lim:tation would prevent vital error information from being
redirected from the slave microcomputer display to the master
microcomputer display. (MS-DOS Reference buide, 1986, p. 3.8)

While such redirection cannot be performed from the
prograr command line, MS-DOS provides function calls that overcome this
limitation., Thecse are MS-DCS function calls 45H, Duplicate a File

Handle (DUF:, and 46H, Force a Duplicate of a Handle (FORCDUF). DUF

creates a new file handle that references the same file at the same
position as an existing file handle. It does so by referencing the
same internal data structure for the file in the operating system for
both files. FORCDUF takes as input two file handles, but forces the
first file handle to refer to a file referenced by a second handle.
The file referenced originally by the first handle is closed (Simrin,
1988, pp. 450 - 452). To accomplish redirection of the Standard Error
character stream and overcome the limitation of the operating system
cited in III.A.c above, the parent process may use the following
procedure (Breco, 1987, p. 26):

Jpern the file that Standard Error will be redirected to
for writing.

Save a pointer to Standard Error using DUF.

Force the Standard Error handle to point to the newly
opened file vsing FCGRCDUF. This closes Standard Error.

Close the handle created in (1) since it 1is no longer
needed.

The child program may now be spawned, and has no
knowledge of the redirection. Upon termination of the child, the
parent reversecz the above process:

Force the Standard Error handle to point back to Standard
Error by using FORCDUF and the saved pointer.

Thie redirection method is used for both Standard Error
and Standard Output to interleave the two output streams into the same
file. A more direct method is to directly manipulate the file handles

in the File Handle Table of the Frogram Segment Frefix, however, thisg

i8

violates the strictures mentioned in the beginning of this chapter and
could corrupt the data structures contained in the operating system 14
improperly done. The use of documented function calls allows the

operating system to protect itself and to provide error handling.

€. PROGRAM TERMINATION

Upon termination of the spawned program, the operating system
accomplishes the following (MS-DOS Reference Guide, 1986, p. 4.241).
First, the three interrupt vectors described above are restored to the
interrupt vector table from values stored in the terminated process’
PSF. Next, control is given to the Terminate Handler address to return
control to the invoking process. Finally, all open files are closed.
Recall that the calling program retains a copy of all open files in its
own F3F., The effect of closing all the files of the child is te flush
file buffers held interrnal to the disk operating system and update the
disk directories (Defenbaugh, 1986, p. 22). The operating system then

terminstes arny redirection.

19

IV. THE PROGRAMMING LANGUAGE

Implementation of this thesis was originally attempted in a subset
of the Department of Defense programming language mandated for mission
critical computer resources, Ada. Ada was chosen to explore the
language in this environment and to apply the language features that
localize the major design decisions into individual program modules
{(decomposition), promote information hiding through separate
compil=tion, and support data abstraction. Concurrency might have
allowed the separation of the communications and control requirements
into separate tasks, but was not supported in the subset. (MacLennan,
1987, pp. 261 - 263)

The subset of the Ada language chosen for this project was RK
Software Inc. JANUS/Ada. This subset of the approved language had
several limitations in addition to the lack of concurrent programming
(task) facilities, but was available and could be utilized on the same
microcomputer for program development and implementation. It had been
used successfully in a similar environment for local area networking
{Works, 1986), (Hartman and Yasinsac, 1986}, and includes a very
capable assembler for constructing machine language packages. It
turned out that this particular implementation was unsuitable to the
proposed capabilities of the distributed processing network for the

reaszons cited below.

20

A. JANUS/Ada
1. Memory Size Limitations of Compiled Code

The initial work for this thesis was to construct a command
line parser to recognize commands in MS-DOS syntax for execution on the
slave microcomputer. This was first implemented in assembly language
following the program of an established command intercept processor
(Mefford, 1986, pp. 313 - 334). This program successfully parsed the
elements of & command line and reported these components,; thereby
demonstrating the potential to execute the command remotely. The code
files of table 4.1 resulted. Files ending in a "“jrl"” suffix are
compiler relocatable object +iles and files ending in a “com" suffix
are the linked result suitable for execution.

TABLE 4.1

ASSEMELY LANGUAGE PARSER

Frogram Name Language File Size (bytes)
find_com. jrl assembly 791

parsemai. jrl Ada package 148

parsemai.com compiled 4480

The parser was then recoded as an Ada package to obtain the
flexibility of the higher order language and to develop the assembly
language to Ada package interfaces. JANUS/Ada allows assembly language
procedures to call Ada procedures and functions, and to reference Ada
data structures. The implementation of the parser as an Ada package
allowed rapid modification to the parser to adjust the command syntax,
az well as for interface to the other Ada packages to be developed for

the system. When compiled, however, the following resulted:

TABLE 4.2

Ada LANGUAGE PARSER

Program Name Lanquage File Size (bytes)
Int_21.3irl assembly 948

cmdlyne. jrl Ada 13656

main. jrl Ada 505

main.com compiled 42427

The cost of coding in this implementation of JANUS/Ada is
evident above. The JANUS/Ada compiler emits about a tenfold increase
in code size to accomplish the same effort as the assembly language
version. The COM file is also much larger, due to the incorporation of
library routines from the J1ib86 support package to handle string
manipulation and other high level language constructs. With a code
size limitation of 44k bytes, results similar to the above would
rapidly exhaust the space available in the small memory model as
paciages were added. This model ics limited to 64 Kbytes of code and a
separate A4 FKbytes of data (JANUS/Ada Package User Manuals, 1983,
p. Z - 4), and is characteristic of COM files running under MS-DOS.
The options were either to cade wmajor portions of the thesis in
assembly language as had been done by Works, Hartman and Yasinsac,
linked together by Ada packages as a main program, or to find a way to
expand the code module. The latter was desirable due to the original
intent to utilize a higher level language for the distributed
processing network. Before this could be pursued, however, a more

serious problem developed.

~
“

2. Failure of the Child Process Call

Az described in Chapter III, MS-DOS commands or programs not
implemented internally by the operating system are called transient
commands, and must be run by loading the program into memory from disk
and executing it as a child process. As the next step in the above
implementation, a call was constructed in an assembly language package
body to the MS-DOS function 4BH, EXEC program (MS-DOS Reference Guide,
1986, pp. 4.237 - 4.239). This was done to overcome a limitation of
the JANUS/Ada supplied procedure, Prog_Call., The supplied procedure
recognizes only program names without path specifications, and does not
allow for a command tail after the program name. The procedure also
terminates both the child process and its parent if the child process
terminates abnormally. This would not allow for a robust distributed
processing system, capable of recovering from a faulty child program
and continuing to operate in the network (JANUS/Ada Package User
Manuale, 198%, p. 13 - 3.

When this approach was implemented, however, all child
processes would execute normally when called from the MS-DOS function,
as expected, The system would lock up upon return of control toc the
parent process, usually with a fatal error message such as INTERNAL
STACE DOVERFLOW. This suggested that something was being corrupted in
the MS-DOS operating system upon termination of the child program.

An investigatior of a disassembly listing of the compiled
program revealed that the JANUS/Ada runtime 1library was writing
initializetion data into reserved areas in the Frogram Segment Prefix

of the parent program., These areas are undocumented by Microseoft in

its official literaturé, but have been identified by other authors.
Table 4.3 shows these locations: (Simrin, 1987, p. 211 - 212)
TABLE 4.7

JANUS/Ada INITIALIZATION AREAS

Location Contents

PSP: 0016 PSP of parent process

FSP:001C Standard Printer file handle (filehandlel41)
PSP:001E filehandlelé]

PSP: 0020 filehandlel81

PSP3 Q022 filehandlef101]

PSP: 0024 filehandlel12]

PSP: 0026 filehandlel141

Sirce the filehandles are indices to data structures internal
to the operating system holding information about specific open files,
the consequences of these actions are that the compiled program
unintentionally creates open +ilehandles after the Standard Printer
handle assigned by MS-DOS, or overwrite the filehandles for files
already opened by the parent program. Recall that MS-DOS opens the
first five handlez, and the application program opens filehandles after
that wp to the FILES = <number> set in the environment. When the
JANUS/Ada program overwrites these handles, the indices represented by
them now poirt to other potentially unrelated areas of the operating
cystem for files referenced by the file handles. These other areas may
then be corrupted whern the operating system attempts to close the child
process’ files using invalid file handles. These data structures are
common in the operating system to both parent and child. This may
explain why the JANUS/Ads built in file operations and functions would

no longer worlk after a single assembly language call to operating

system function calls, as observed by Works (Works, 1986, p. 24).
Works wrote all file handling procedures for his program in assembly
language to overcome this fault. (Works, 1986, p. 33)

The effect of corrupted data areas in the operating system is
to compromise the internal state of MS-DOS when the child process
terminates.

3. Need for a Replacement Language

At this point, a decision was made to implement the thesis in

a language that would support child processes and provide a larger

memory madel.

B. TURBO PASCAL

While performing the initial work for this thesis, Borland
Corporation Turbo Fascal veresion 3.0 was being examined for the
possible use of a construct similar to its operating system calls. The
language utilizes & very general procedure to call MS-DOS functions and
scftware 1interrupts with a date structure standing in for the contents
of the microprocessor registers discussed in Chapter II. With such a
procedure constructed for the JANUS/Ada language as a supporting
package, the large number of assembly language procedures and functions
that Works, Hartman and Yasinsac required ~ould be abstracted out to a
single general purpose procedure, tailored for each instance by the
register contents,

Wher the difficulty encountered with the failure of child processes
in JANUS/Ada, & rapid prototyping effort was used in Turbo Fascal to

checl the author 's understanding of the reguirements for the EXEC call

nc
&t

in another language to detect possible errors in implementation. The
EXEC function worked satisfactorily in Turbo Pascal, using either the
MS-DOS call construct or the compiler’'s built in procedure. Since the
Ada implementation appeared to be infeasible, the program was
implemented in Turbo Fascal. It turned out that version 4.0 of that
language has features that capture the essence of the original
programming objectives. Some particular features follow:
1. Information Hiding
Borland‘'s Turbo Pascal version 4.0 implements the Unit as
originally developed for UCSD Pascal (Duntemann, 1987, p. 11). This
programming construct allows modular programming very similar to Ada,
however separate compilation camnot be achieved with just the module
interface declaration, as it can 1in Ada. Variables and procedures
implemented in the UNIT body are not visible by outside modules, as in
the Ade package.
2. Support for Child Processes
Turbe FPascal provides a robust implementation of the MS5-DOS
Function 4BH, called EXEC. This is & high level procedure that takes
Fascal strings for the program path specification and the command tail
arguments as parameters. The procedure utilizes the Turbo Fascal
global variable DOSError to report operating system error messages for
program handling.
3. Data Abstraction
Turbo Fascal supports data abstraction in much the same way as

Ada, but does not implement a Private declaration.

4, Unit Initialization
The Turbo Fascal Unit provides an initialization section for
Units, which can be used to perform unit configuration and to save
state information prior to program execution. This 1is helpful for
saving interrupt vector table contents for restoration on program exit.
S. Unit Exit Procedures
Jurbo Fascal provides an important feature by allowing the
programmer to declare an exit procedure that will be run wupon program
termination. This procedure will execute for normal or abnormal
termination, and can be constructed to provide error handlers. The
primary wuse 1in this thesis was to insure that interrupt vectors were
properly restored on program termination.
6. Absolute Variables
Turto FPascal supports manipulation of hardware memory
lacations by &allowing the programmer to specify the actual location in
memory of 2 data structure. Thie 1is accomplished by the ABRSOLUTE
reserved word 1n a VAR declaration, and was used to declare a pointer
to reference the videc memory for windowing operations (Edwards, 1987,
F. 0.
7. File Input and Output
Turbo Fascal provides the capability to read or write to
untyped files in addition to Wirth’'s Read and Write procedures. This
allowed the file transfer protococl to treat a file as a stream of

bytes.

8. Port Read/Write
Turbo Fascal provides FPort and Portw procedures to read or
write byte and word sized variables to the IBM PC ports. This
capability was used in the serial communications port module.
9. Interrupt Service Routines
The Turbo Fascal compiler has a special reserved word,
INTERRUPT, that allows the programmer to define procedures as interrupt
service routines., The compiler handles all register preservation and
stack operations across the call.
10. Exception Handling
Turbo Fascal does not implement the Ada zxception handler,
however, the combination of the DOSError variable and the abilitvy to
reiax 1/03, range and type checking within a local scope allows the
programmer to place the exception handling mechanism in the control
flow with standard structured programming technigues. An EXIT
procedure witth a scope identifier would have been useful to escape a
nrocedure, however , the current approach enforces structured
programming.
11. High Level Software Interrupt Procedure
Turbc Pascal provides a predefined procedure, MSDOS, and a
data type, registers, that allows a simple and standardized interface
to the operating system software interrupt function calls. The
registers data type stands in for the processor’'s built in reg:i:sters
and allows the programmer to treat the MS-DOS functions 1n the same

menner as a procedure. No assembly language programming is involved.

12. ROM BIOS and Hardware Interrupt Procedure
The above procedure, MSDOS, 1s a special case of the general
Turbo Fascal procedure, Intr (Intr, regs), which allows access to any
hardware or software interrupt available on the IBM-PC compatible
microcomputer. No assembly language programming is involved.
13. Support for a Larger Memory Model
Turbo Pascal compiles programs into EXE files, and greatly
expands the potential size of a program. Each unit has an independent
code segment, with a maximum size of 64 kKbytes. A single data segment
and stack segment is allowed, each with their own 64 Kbyte limitation.
The remainder of memory, up to 640 Kbytes, is available on the heap.
The stack and heap cize may be set by compiler directive to leave room

for spawnec processes. (Duntemann, 1987, p. 12)

C. IMPLEMENTATION

The distributed processing program was implemented in Turbo Fascal
4.0, ac dezcribed in the next chapter. This larguage provided support
for all proposed capabilities while eliminating the requirement for

e-tensive assembly language programming.

V. THE IMPLEMENTATION

The distributed processing program in this thesis has its origins
in an existing terminal program supporting the Xmodem protocol
(Edwards, 1987, pp. 220 - 275). This "brassboard" program served as
the foundation for the addition of the command transfer functions that
were required by the proposed capabilities of the distributed
processing network, and was expanded to provide finer control over
muitiple serial ports. In addition, command parser and local execution
modulies were added for the Slave microcomputer to execute resident
programs. The operator interface and windowing environment was largely
retained i1ntact, and 1€ utilized for the man machine interface.

Thise approach sllowed the referenced program to be modified in
discrete steps, ancd provided a test environment to exercise each

portion of the imblementstior listed below.

A. THE HARDWARE CONFIGURATION

The hardware used toc implement the distributed processing network
consists of Igr FC/AT compatible microcomputers. Each Slave
microcomputer 1= supplied with & hard disk drive of 10 megabytes or
greater capacity, &40 FKbytes of memory and one RS-232C port. The
Master micreocomputer 1s configured identically, except 1t has an
additionai communications port.

The serial connection between computers are the RS-232

communications ports operating at 9600 baud for IBM PC/AT compatible

0

machines and 4800 baud for IEM PC/AT compatibles. The microcomputers
at each end of a single link must be configured for the same speed.
The pin connection for the interconnecting cables is shown at Figure
6.1. For microcomputers with the nine pin AT style connector, a nine
pin to RS-232C 25 pin DB-25 cable is recommended, with a NULL modem in
between. Hardware handshaking is turped back in this configuration,
The program will operate satisfactorily through a modem if the baud
rate is lowered. (Flanders, 1989, p. 252

FIGURE S.1

SERIAL PORT CONNECTIONS

Computer 1 Computer 2

Fin Function Fin Fin Fin Function

Signal Ground 7 = 7 Signal Ground
Transmit Data 2 - =3 Receive Data
Receive Data DA ——— 2 Transmit Data
Request to Send oS-y = o Request to Send
Clear to Send S -1) Clear to Send
Carrier Detect g8 -’ ‘- 8 Carrier Detect

Lata Set Ready & ——, v b Data Set Ready

Data Terminal Ready 20 =7 - 20 Data Terminal Ready

B. SOFTWARE CONFIGURATION
1. The Operating System
The cperating system is supplied with the microcomputers, and
1s Microsoft MS-DOS, version 2.0 or higher.
2. The Distributed Processing Program

The distributed processing program was written to accommodate
the above operating system, and is used on both the Master and Slave

microcomputers.

3. ICOPY File Transfer Program

A high speed, adaptive file transfer program is provided with
the distributed processing system software that allows file transfers
to be executed at the maximum speed permitted by the serial
communications link. The maximum speed is 115 Kbytes/second. The
program runs as a child process under the distributed processing
system, and includes independent error checking protocols. (Flanders,
1989, p. 282).

4. Software Maintenance
a. Configuration
Configuration 1is accomplished by a built in function in

the program, provided the program was initialized as a Master. This
normsily suffices to set default configuration options, such as port
settings, for automatic loading when the program is run. The settings
are saved in a file. 1If the file is erased, the program initiates its
default settings and the operator can then recreate the file.

b. Software Modification

Software modification is accomplished through built

in editing, compilation, and run time environment supplied with Turbo
Fascal version 4,0. Build and make utilities are supplied with the

compiler to allow program modification and rebuild.

C. SYSTEM DESIGN
The problem of designing a distributed processing network was
decomposed into the following efforts:

i. The command parser for the remote (slave) wmicrocomputer.

-
Al

2. The execution of child processes.

3. Redirection of child process output.

4, File and command transfer via Xmodem.

S. Serial communications.

6. The man machine interface.

1. The Command Parser

The command parser decomposes an MS-DOS command directed to
the Slave microcomputer for execution into its component disk drive,
path, command or executable file name, and command arguments. The
latter is commonly called the command tail. Since compatibility with
the current MS5-D0OS command syntax was desired, these commands take the
form:

f{drive: J[\1l[directory\l..[directory\] command [command taill
Once parsed, the type of command is determined so that the SGlave
computer can e:zecute it properly. As an experiment, the Unix commands
CAT and LS are mapped iﬂl[_their MS-D0OS equivalents to demonstrate a
Slave with limited bilingual capabilities.

2. The Execution of Child Processes

Once the command is parsed, the parser must properly determine
if the command cited is a command normally executed internally by
MS-DOS, an executable COM or EXE file, or refers to a directory
operaticn. Internal MS-DOS commands implemented within the distributed
processing program are detected by pattern matching, the remainder are
identified by conducting an iterative search across the specified
directory (or the current directory if none is cited in the remote

command) for an executable file of the appropriate ertension, utilizing

ot d

the Turbo Pascal built in functions Find_First and Find_Next. If
found, the type of file is passed by the parser to the appropriate
execution routine. The executable files are those with COM, EXE or BAT
extensions. MS-DOS does not require the operator to enter the
extension, and will execute the first file encountered with the command
name and an executable extension in the following order: COM, EXE and
BAT, The parser copies this trait. Implementation of the different
command types is summarized below.
a. Internal Commands

Internal commands are those that are executed within the
MS-DOSE command processor, and are available from the familiar A>
prompt. These include the directory manipulation commands ChDir, Copy,
Del, Dir, MkDir, Ren, RmDir and disk drive login; toc which were added a
prompt command to obtesin the current directory on the Slave
microcomputer for display at the remote, and Equip, which provides the
Slave configuration (disk drives, memory, etc) accessible to the ROM
BIDS interrupt #11 (MS-DOS Version .21 User ‘s Buide). ChDir, MkDir,
and RmDir along with FPrompt are provided within the distributed
processing program. Error messages are supplied +from the MS-DOS
operating system, hence, they are identical to those encountered 1in
local operations., Rather than duplicate the capabilities of the MS-DOS
command processor for the remaining commands, MS-DOS 1is wutilized to
assist in this effort. A secondary copy of the MS-DOS command
processor is located by inspecting the "COMSFEC=<path/name:" string
fom the local environment area, and is spawned with the appropriate

command *ail for the desired command. This allows the remocte command

to execute as if it were entered from the Slave microcomputer’'s
keyboard, and provides a familiar response. A utility program in the
public domain was utilized as a programming template to detect the
proper course of action before spawning a child process, depending on
the type of command received. (Mefford, 1988, pp. 321 - 336)
b. External (Executable) Commands
External commands are those that require the distributed
processing program to load, execute and collect output for display.
These are the familiar COM, EXE, and BAT files found in directory
listings. These commands are executed by calling the Turbo Fascal EXEC
procedure directly from the distributed processing program, with the
explicit path specification regquired by the procedure supplied by the
parser in its search +for the executable file. The command tail is
provided from the parszing operaticon, Batch +files are handled by
spawning a secondary copy of the command processor with the batch file
name as the command tail, as described for selected internal commands.
(Mefford, 1988, p. TI7)
3. Redirection
Redirection control 1is contained in a separate module that
contains most of the Turbo Fascal EXEC calls. Prior to spawning an
executable file, a variable is checked to determine if the program
output 1s to be redirected to a file managed by the distributed
processing program. This file is used to send the program output back
to the Master microcomputer over the communications channel by the
¥modem protoccl after execution of the program cited in the remote

commanc, The variable is managed by the module initilization routines

g

-t ot

and is normally set for redirection, otherwise the program output would
appear on the Slave microcomputer screen. If redirection is desired,
the distributed processing program redirects its own output to the
redirection file, utilizing the MS-DOS Function Calls 45H (DUPlicate
handle) and 46H (FORCDUFlicate handle) as described in Chapter III.
Since the child process inherits all open files from the parent (in
this case the distributed processing program), it proceeds through the
execution oblivious to the redirected output. Error reports are also
available in the redirected output file, which overcomes a limitation
of redirection invoked from the command line with the <, >, »>» and |
symbols. The appropriate files are then available to forward to the
Master microcomputer. (Greco, 1987. p. 25)
4. %ile and Command Transfer via Xmodem

Since the Xmodem protocol is utilized for both command and
data trancfer, the highly modularized approach found in (krantz, 1985,
pp. 66 - B89) is implemented to handle synchronization, packet transfer,
and file tramzfer under flow control in a hierarchical manner. The
modular approach does require a large number of variables that are
glebal irn scope to the different building blocks, however, the
concentration of these variables and their associated function and
procedure implementations in & Turbo Pascal Unit as private variables
preserved information hiding. An additional +file transfer program,
lcopy, 1is available as an operator option on the Master display and
allows the use of an adaptive protocol that transfers +files at the

maximum speed of the communications link, regardless of settings.

S. Serial Communications

All communications between the Master and Slave microcomputers
are handled by the microcomputers stancard serial communications ports.
Communications is at 9600 baud for communications between IBM PC/AT
compatibles, and at 4800 for IBM PC compatibles. The interrupt service
routines handle receive character streams for hardware ports COM! and
COoM2, and are adapted from source listings posted on the
info-pascal@vim.brl.mil network (Kimura, 1988) and (de Boer, 1988).
Receive characters are queued in a receive buffer for each port.
Transmit characters are sent under program control in a polling loop.

6. Man Machine Interface

The program uses the same operator interface for both the
Master and Slave configurations. Initialization is accomplished from a
configuration file in the local directory or from default constants if
the +file is absent. When initialized, the program presents a terminal
screer for the primary port with communications inhibited. The
operator is then able to select options by special key combinations
{Alt-keys) to revice the configuration file, initialize communications
ports, enable and disable receive interrupts on a port basis, and
select the current port for use with +file transfers and command
transfers to the connected slave. File, command transfers, and the
output of the remote Slave computer is available on a monitor window.
Status windowsz are shown for critical parameters.

The Slave microcomputer is operated in an infinite 1loop to

receive and process commands. Local operation may be restored (at the

cost of disabling server <functions) by pressing a local key which

aborts the Slave program,

D. DESIGN CONSIDERATIONS
1. Assembly Language
Assembly language is used in only two locations in this
thesis, for the purposes of code optimization. The first is to move
data between the screen buffer and a storage location to open and close
windows on the screen as used in the windowing module. The second is
to enable and disable CFU interrupts for the interrupt service routines
contained in the dat2 communications module. Both instances utilize
built in assembly language facilities of the compiler. The remainder
of the program is coded in the Turbo Fascal dialect.
2, ROM BIOS Software Interrupts
Calls are made to the ROM BIOS of the IBM PC compatible
computere to perform communications port speed initialization
{interrupt ¥%14), and to obtain the machine disk drive, memory, and
communications port configuration for display (#11),
3. Memory Management
Memory maragement is handled by the Turbo Fascal compiler
in accordance with the $M compiler directive. This was adjusted from
that offered by the Turbo version 2.0 to version 4.0 conversion
utility, which allocated all memory to the distributed processing
program. By reducing the size of the heap, child processes and MS-DOS
shells can be run from the program as & p-rent. The primary consumer

of heap memory is for dynamic alleocation of memory to save screen

displays for windowing. Current program memory requirements are less
than 75 kKbytes, exclusive of the MS-DOS operating system and any
Terminate and Stay Resident programs run before the program. The use
of Terminate and Stay Resident programs is not recommended due to
unpredictable side effects.
4, Synchronjzation

Synchronization is normally maintained by starting the Slave
microcomputer in the command receive mode and then executing in an
endlese loop. The Master computer operator must initialize the
communications ports (if required) and connect to the appropriate port
to access the desired Slave. Commands are normally passed to the Slave
and responsesz displayed on the Master, however, if the Master computer
:e¢ redirected to arpther task while the Slave 1is processing the
request, thes Slave will wait on the Master with its response. This is
a functionality of the Xmodem protocol, which is receiver driver. A
resynchronization command is available to the Master operator to +force
the &Slave back into the command receive mode if required. The process
is currently manual, and depends on operator familiarity with the
likely Slave responses. Adequate, although not necessarily automated,
status responsez are available to the Master operator to determine the
Slave state.

S. Modular Programming

The windowing support unit, the Xmodem file and command
transfer protocol, and the RS-232C serial communications port and
interrupt service routines are contained in separate units. In the

case of the Xmodem unit and the data communications unit, the original

terminal program interface is retained although the implementation is
considerably different. This was intentionally done to create the
potential to provide a different transfer protocecl or to use a
different network by redesigning the implementation section of the
unit, and to demonstrate information hiding. The windowing unit was
simply converted to a Turbo Pascal unit (Edwards, 1987, pp. S0 - 98),
along with a general support unit (Edwards, 1987, pp. 66 - 73).
6. Preservation of Interrupt Vectors on Program Termination

The manipulation of the vectors in the IBM-PC interrupt vector
table provides a powerful means to enhance the capabilities of the
machine; whether to incorporate new hardware or to adapt an existing
capability in software. The potential is equally high te lose control
of the system if the interrupt vectors are not restored when the
program ends. This must be handled for normal termination as well as

unplanned, cr abnormal termination,

E. SYSTEM EXECUTION
1. Initialization
The program contains all functions for operation as either a
Master or Slave microcomputer on the distributed processing network.
The operating selection is made when the program is run, either by
Distrib Master
for operation as & master, or by
Distrib
or

Distrib Server

40

for operation as a Slave. The program than searches for its
configuration file and uses that to set the default communications port
settings, screen colors, etc. If not found, the program utilizes built
in defaults,
2. Slave Operation

Slave operation is automatic, with the program initializing
ite communications port (default is normally COM1), and entering the
command processing mode in an infinite loop. This loop may be reset by
the remote Master if the Slave is expecting to return a seguence of
responses from a completed command, and the Master operator decides to
abandon the command after exzecution. 1In this case, the Slave is reset
over the communications port to the beginning of the command receive
loop to prepare for the next command. The program is aborted and
control 15 returned to the operating system if any key on the Slave
keyboard ic depressed. No warning is sent to the Master, since the
Macster may be communicating with another Slave and receive buffers are
purged to begin a new communications sequence as recommended i1n the
Xmodem protocol. The Master operator can check for a "live" Slave by
watching for the received NAK charactere, displayed each five seconds
cver the regeive channel, or enter receive mode to display & program
response from the Slave.

3. Master Operation

Master coperations are menu driven. Upon initialization, the
Master displays a status bar showing the current communications port
selected at the hottom of the screen and queues the operator to depress

the HOME key for a list of commands available. The program otherwise

41

displays a blank terminal screen although the communications ports are
disabled for receive on startup. When the operator depresses the HOME
key, a window appears that offers the following command selections with
& menu bar that can be positioned to select the desired command. The
operator is also reminded that the listed commands may be selected from
the terminal screen by depressing the Alt - <key> combination. The
commands are:

Alt-A Change drive % path
Alt-B Send a Break signal
A1t-C Update Config File
Alt-D Dialing Directory
Alt-E Local echo toggle
Alt-F Change DC params
Alt-G Ehow disk directory
Alt-H Hang up phone

Alt-L DOS Shell

Al1t-M Activate Master
Al1t-F Fort Operations
FgDr,

Alt-F XMODEM Get a file
Alt-S Activate Server
PgUp,

Alt-T XMODEM Fut a file
Alt-¥ (ESC) Exit emulator

A more complete discussion of the different commands 1s found in
Appendiv A, the Operator’'s Manual. The following 15 a summary of
capabilities, ac seern from the Master microcomputer.

a. Terminal Operations
The opening screen of the program is adequate to perform
teletype terminal communications over the currently selected
ccmmunications port, once properly 1initialized, The initialization

commands are found in the Activate master subscreens.

b. Port Initialization
The menu selections available allow the operator to
override the default communications ports settings and to select a
communications port +or communications with the remote Slave. An ESC
key returns the operator to the terminal screen.
c. Remote Login to Slave
Most operations are accomplished at the Slave by using
the remote login function. The command is packetized at the Master and
sernt to the Slave as a 128 byte Xmodem packet. Upon successful receipt
at the Slave (signalled by an ACK character received at the Master),
the Master thern assumes the Xmodem receive function to await the
response from the Slave. The Slave then sends a packet back with a
prompt containing its current directory and drive. This prompt is
structured to look like the operating system prompt. Once received by
the Mzste-, the Slave revertz to command receive mode to await the next
commanc. The Master displays a window to prompt the operator for the
rext command to send to the Slave, or to quit the command mode. If a
commancd is sent, it i1s packetized and tfansmitted as before.
d. Remote Program Execution
Frograme are run on the Slave microcomputer 1in response
to commands received from the Master. Once the command is parsed, the
program handles some commands internally and runs a program as a child
process to accomplish those commands it does not recognize internally.
For spawned programs, the program output is captured in a file and then

sent back to the Master, The Master waits for the response after

sending the command. Respcnses may be a series of strings or files,
and are displayed on the Master remote login window.
e. Flow Control
Flow control (selection of receiver and sender) 1is in
accordance with the Xmodem protocol, with one exception. @An EOT (End
of Transmission character is specified in that protocol to signal a
complete transmission, In order to accomplish multiple string or file
transmission from the Slave to the Master to forward the output of a
spawned program, the Master interprets each received EOT character as
an end of transaction {(string or file) as in the original protocol, but
does not end its receive operations until a CAN character is received
from the Slave to signal the end of the command and response sequence.
f. Remote Reset
Related to flow control is the ability +for the Master
microcomputer to reset the flow direction if the Master and Slave
microcomputers lose ~ynchronization. This may happen between the
command transfer to the Slave and the response from that microcomputer,
and ie vsually erhibited by both microcomputers attempting to send or
receive at the same time. The Master operator may break the deadlock
by sending a series of CAN characters to the Slave to force it back
into the command mode.
Q. File Transfer
To send a file, the operator selects the ZCOFY option tc
the remote microcomputer and the system prompts for a filename. A
complete path may be specified. Once selected, the program invokes a

copy of the IZCOFY program at the Slave and places it in ZCOFY Server

a4

mode. The Slave then waits for the handshaking protocol from the ZCOPY
program at the Master (also spawned), and establishes a link over the
serial port at the maximum reliable data rate. Once the transfer is
complete, both copies of ICOPY terminate and control is restored to the
distributed processing program at the established data rates. The

Slave then reports the ZCDFPY program output to the Master.

F. THE MODULES
The following program modules are contained in the distributed
processing program.
1. Distrib
Distrib is the main program for both the Master and Slave
camputers.
2. DataCom
Unit DataClom provides all procedures and functions needed to
initialize the computer serial communications ports, enable and disable
receive interrupts, provide buffered reception of characters, clear the
receive buffer(z), send or receive bytes through the ports, seng a
BREAK signal over the RE-232 port, and nondestructively read the
receive buffer(s’, It supports Unit Xmodem and the terminal portion of
Cistrik. The currently selected communications port is contained in
public variable Current_Com.
3. Director
Uriit Director is a set of functions and procedures that allow

the output MS DOS file directories to a windowed environment. Masking

4%

options and a selector for normal or abbreviated (similar to the MS-DOS
/w switch) displays are allowed.
4, ErrorCod
ErrorCod is a array of string constants mapped by the DOS
Error Code, Error C(Class, Recommended Error Action and Error Locus
indices found in (Microsoft, 1986, pp. 3-1 - 3.11, 4.254 - 4.2505). The
unit is used by the units Parser, Spawn and the program Distrib to
report errors. A procedure is also provided to retrieve extended error
code information available in MS-DOS versions J.0 and above by DOS
function call S9H.
S. General
The General Unit is & collection of general purpose routines
that support the Wndow Urit and other modules. (Edwards, 1987, pp.
&6 - 77)
6. MiscPack
bnit Miscpack ie & <collection of data types and utility
routines supporting these other units: Xmodm, Parser, Spawn, Redirect,
and the main program Distrib. The strong typing features of Turbo
Fascal require that instances of data types in different units that
must be equated be declared in one place to be compatible at compile
time. (Swan, 1986, pp. 14 - 23
7. Parser
Urit FParser contains & central procedure, Parser_Main, which
attempts to parse and execute an MS-DDS style command on the local

mactine. The remaining procedures and functions support this function.

46

8. Redirect
Unit Redirect is a set of functions and procedures that allow
the output of programs spawned under the Slave computer’'s copy of the
main program Distrib to be redirected to files. Once the program ends,
the Slave computer can then forward the output normally displayed on
the screen to the Master computer for display.
9. Spawn
This Unit detects commands that should be processed internally
by the Distrib program, and executes commands internally or by spawning
a child process. Command output and error responses are returned to
the caller either as strings suitable for conversion to Xmodm packets,
or by reference to files containing the text. This unit also contains
the redirection switch as & public variable that dictates whether
prog-am output will be redirected to a file or displayed locally on the
screen. This switch is normally set to redirect to file.
10. Support
Thz Support Unit contains most of the constant declarations
for the program, along :ith the initialization procedure some general
purpcze procedures as found in the original terminal program.

(Edwards, 1987, pp. 241 - 272}

11. Wndow
The Wndow Unit provides all window creation, memory
allocation, display, menu bar processing, closure and memory

dezllocation functions for the program Distrib. The unit was changed

from ar inzlude file to a unit, but not otherwise changed from that

originally developed by the author in (Edwards, 1987, pp. 50-98).

purpose descriptions are from the author.

12. Xmodm

This Unit handles all requests for Xmodem protocol packet

file transmission and reception.

48

The

and

VI. CONCLUSIONS

The program developed and implemented for this thesis successfully
demonstrated the capability for unmodified IBM PC/AT compatible
microcomputers to operate in a distributed processing network. A small
star network consisting of one master microcomputer and two slave
microcomputers was installed and operated in a laboratory environment.

The network displayed the capability of transferring program and
data files betweern the master microcomputer and either of the slave
microcomputers, and the capability of the master to command the
executior of MS-DDS commands a&and executable programs on the slaves.
The network further demonstrated that the output of the commands or
programe could be displayed on the master computer. A simple error
recovery methodology was also demoncstirated.

Implementation of this program was not feasible in RR Software,
Inc. JANUS/Ada, due to unexpected problems in the implementation of
that scsubset of the Ada language and that compiler ‘s design. This is
not a fault of the Ada programming language. These design deficiencies
in the JANUS/Ada were specific to the implementation in an MS-DOS or
CF/M environment; and caused fatal operating system faults wher a child
process was executed from the command parser, as implemented in
JANUS/Ada. The amount of code emitted by the compiler also appeared to
ke relstively large. It should be neoted that the compiler available

for this thesis was relatively, old, version 1.5.2, and as a subset of

49

the Ada language was ‘not validated. It may be that the current,
validated version has corrected these deficiencies.

Borland Corporation. Turbo Pascal proved to be a viable programming
environment for this thesis, and provided many of the features desired
from the Ada programming language. These include information hiding
through modular program and the unit structure, data abstraction,
strong typing, and high level procedures for file input and output,
access to the microcomputer input/output ports, and a standardized
interface to the system software interrupts. Assembly language
programming was not required, and was used in two isolated locations to
implement replacement interrupt service routines and enhance block data

movemert.

APPENDIX A

OPERATOR 'S MANUAL

A. STARTUP

The distributed processing program is designed to operate on an IBM
PC/AT compatible microcomputer such as the Zenith Z-248. Minimum
configuration is a 10 Mbyte or larger hard drive, 630 Kbytes of memory,
an EGA or VGA monitor, and at least one floppy <for program loading.
The following files should be resident on the hard disk in the desired
directory: DISTRIB.EXE, DISTRIR.CFG, DISTRIB.PHN. A subdirectory
should exist off the root directory of the hard disk named SCRATCH for
the maintenance of redirected output +files generated by the Slave
program. The file transfer program ZCOFY.COM should be available in
the DISTRIE.EXE directory.

The microcomputers must be connected by a null modem and
appropriate cables before the network will operate. Turn on the Slave
microcomputer (s) first.

B. Slave Operation

Slave operation is avtomatic. For convenience, if the
microcomputer is to be wused largely as a Slave in the distributed
processing network, an AUTOEXEC.BAT file may be placed on the boot
drive root directory that specifies the complete drive and path
specificatior for the program, with the following program name:

[drivellpathlDISTRIE Server

On startup, the program will load, initialize and display a
status screen with a monitor window for remote commands and the Slave's
responzes. Operation of the Slave may be monitored from the display
screen, The program is aborted and control 1is returned to the
operating system if any key on the Slave keyboard is depressed. No
warning is sent to the Master.

C. Master Operation

Master operations are menu driven. For convenience, 1if the
microcomputer 1is to be used largely as a Slave in the distributed
processing network, an AUTOEXEC.BAT file may be placed on the boot
drive root directory that specifies the complete drive and path
spec:fication for the program, with the following program name:

{drivellpath]lDISTRIR Master

On startupy, the program will load, initialize and display a
status bar at the bottom. This bar shows the current communications
port selected at the bottom of the screen and queues the operator to
depress the HOME key for a list of commands available. The program
otherwise displays a blank terminal screen although the communications
ports are disabled for receive on startup. When the operator depresses
the HOME key, a window appears that offers the following command
selections with a menu bar that can be positioned to select the desired
command. The operator is also reminded that the listed commands may be
selected from the terminal screen by depressing the Alt - <key’
combination. The commands are:

Alt-A Change drive & path
Alt-B Send a Break signal
Alt-C Update Config File
Alt-D Dialing Directory
Alt-E Local echo toggle
Rl1t-F Change DC params
Alt-6 Show disk directory
Alt-H Hang up phone

Al+-L. DOS Shell

Alt-M Activate Master
Alt-F Fort Operations
Fghn,

Alt-R XMODEM Get a file
Alt-S5 Activate Server
Fglp,

Alt-T XMODEM Fut a file
Alt-X (ESC) Exit emulator

These commands are discussed individually in the following
sections. What follows is a general sequence of commands or selections
to accomplish processing on the Slave microcomputer.

1. Terminal Operations

The opening screen of the program is adequate to perform
teletype terminal communications over the currently selected
commuriications port, once properly initialized. The initialization
commands are found in the Activate Master s.ubscreens.

2. Remote Login

The Slave microcomputer mav he operated as though the Master
operator is entering commands +. @ its keyboard and observing the
results on its display. These functions are remoted to the Master
screen.

o
+)

To log 1in to the Slave, select Activate Master from the main
menu and then select coptions from the secondary menu to establish the
correct baud rate, parity, for the port connected to the desired Slave
and to connect the port. The default settings are usually satisfactory
once the network ic established. The Master cannot reset the Slave's
port parameters remotely. Once the port is connected, select Remote
Login from the Activate Master menu. After a moment for the exchange
of command and response, the Slave’s local directory will be displayed.
From this point, any MS-DOS command or program entered at the Master
may be run on the Slave and the output will be displayed at the Master.

3. Initialize Port, Connect Port, Disconnect Port

These commands are used to set the communications port
settings, and to establish a link to the attached Slave microcomputer.
Both the Slave and Master microcomputers must be set up at the same
serial port parameters to communicate. To change to a different Slave
{(port), either first disconnect the current port and connect the
decired port, or simply connect the new port.

4, Equipment Status

This command will return the Slave configuration on the Master
screen. The numper of disk drives, communications ports, and available
memory 1s displayed.

S. ZCoPY

These commardse allow file transfers from or to the conrmzcted
Slave. Upon activation, the program will prompt for the file name to
be sent or received. 1f the copy will result in another file of the
same name being overwritten, confirmation will be asked. The Master
will display the Slave's ZCOFY program output after the transfer is
complete. This is useful if an error occurs.

6. Reset Remote
This command is useful if the Slave was operating
satisfactorily and now appears unresponsive. It aborts any protocol
transfer in progress and restores flow control the command receive
mode.

7. Exit (ESC)

This exits the Activate Master environment. All
communications port selections remain intact.

D. COMMAND SUMMARY
The remaining commands accessed from the main screen are:
1. Alt-A Change drive & path

This command changes the current disk drive and path for file
transfers or directory operations. It also determines the starting
directory for a DOS shell.

2. Alt-B Send a Break signal

This command sends an RS5-232C break signal over the currently
selected communications port.

3. Alt-C Update Config File

This command &allows the operator to display the current
program configuration parameters as found in the file DISTRIB.CFG, in
the current directory. An error indication is given if the file is not
found. The operator can select any of the displayed parameters to
change, and a range of optione is displayed. Default settings for the
communications ports, the modem dialing prefix, and screen color
csettings are provided.

4, Alt-D Dialing Directory
This command allows the pperator to dial a telephone number
trom a list of stored numbers, or a number entered manually from the
keyboard. This command assumes a Hayes compatible modem.
5. Alt-E Local echo toggle
Intended for terminal operations, this command sets a hal#
duplex toggle to display transmitted as well as received commands if
the remote terminal does not echo received characters.
6. Alt-F Change DC params
Thice command allows the operator to set the baud rate, word
length, parity and stop bits for the currently selected communications
port, to override the configuration settings.

7. Alt-6 Show disk directory

This command displays the local disk directory, in MS-DOS
standard or /w formats.

8. Alt-H Hang up phone

This command tells the modem to disconnect the telephone line.

9. Alt-L DOS Shell

This command executes a secondary copy of the MS5-DOS command
processor to allow the operator to utilize the operating system without
terminating the distributing processing program.

10. Alt-M Activate Master

This command opens a second set of commands to command the
Slave processor. These include:

Initialize port

Connect to current port
Disconnect current port
ICOPY file to remote
ZCOFY file from remote
Get machine status
Login to remote machine
Reset remote server

a. Initialize Port

Thiz command allows the operator to select the current
port parameters from a menu of options, ranging from 110 baud to 38,40C
baud.

b. Connect to Current Port

Thie command allows the operator to assign a port
(currently COM! or COMZ) as the port for current operations.

C. Disconnect Current Port

This command disabies the receive interrupts for the
currently selected port.

d. ICOPY file to remote

This command requests the name of the file to be sent to
the Slave, and then invokes a program called ZCOPY to send the file at
the maimum data rate supported by the communications port.
Precautions must be taken if a modem is used, since the modem will
dictate the maximum data rate.

e. ZCOPY file from remote

This command requests the name of the file to bhe received
from the €lave, and then invokes a program called ICOFY to receive the
+ile at the maximum data rate supported by the communications port.
Frecautions must be taken if a modem is used, since the modem will
dictete the maximum data rate.

§. Get machine status

This command allows the Master operator to query the
configuration of the connected Slave microcomputer, and displays the
number of floppy disk drives, communications ports, and available
memory.

Q. Login to remote machine

This command returns a prompt from the remote machine on
a full screen window at the Master. The operator is then able to send
commands to the Slave in much the same manner as from the local
operating system prompt. Responses are displayed on the Master screen.

h. Reset remote server

Thie command is used to resynchronize the Master and
Slave computers. It does so by sending a series of CAN characters down
the serial communications link to abort any operations in progress and
return the Slave to the command mode.

11. PgDn, Alt-R XMODEM Get a file

This command allows the Macster to perform a file transfer from
an Xmodem compatible remote system. The filename is requested from the
operator to assign to the received file.

12. Alt-S Activate Server

Thizs commard allows the operator to invoke Slave operations on
he local microcomputer, and is useful for systems initialization and
etup. Deprezsirc & key while in this mode aborts the Slave operation,

1=
but returns the program to the terminal mode.

(s

13. PgUp, Alt-T XMODEM Put a file
Thiz command zllows the operator to perform a file transtfer to
an imodem competible remote system. The filename of the file to be
sent 1s requested from the operator.

14. Alt-X (ESC) Exit emulator

This command halts the program, restores all communications
port interrupt vectors, and returns control to the operating system.

E. TERMINATION
1. Slave

Slave operation is terminated by depressing a key. Control
returns to the operating system,

2. Master

The Master 1is terminated by returning to the main menu
(terminal screen) and depressing Alt-X. Control returns to the
operating system.

o
~J

APPENDIX B

INSTALLATION/PROGRAMMING AIDS

This appendix provides information on the construction of null
modem cables for use between the Master and Slave microcomputers, and
provides a listing of all procedures and functions found in the
distributed processing program. These procedures and functions are
sorted alphanumerically within by program or unit.

A. SERIAL PORT CONNECTIONS

The serial connection between computers are the RS-232
communications ports operating at 9600 baud for IBM FC/AT compatible
machines and 4800 baud for IBM PC/AT compatibles. The difference is
due to some spurious characters noted on the slower machine’'s display
during data transfers. The microcomputers at each end of a single link
must be configured for the same speed. The pin connection for the
interconnecting cables is shown at Figure B.1. For microcomputers with
the nine pin AT style connector, a nine pin to RS-232C 25 pin DB-235
cable 1= recommended, with & NULL modem in between. Hardware
handshaking is turned back in this configuration. The program will
pperate satisfactorily through a modem if the baud rate is lowered.
(Flanders, 1929, p. 2520

FIGURE R.1

SERIAL FORT CONNECTIONS
Computer ! Computer 2
Fin Function Fin Fin Fin Function
Signal Ground 7 emrmm——— 7 Signal Ground
Tramsmit Data 2 =3 Receive Data
Receive Data I Aemem— 2 Transmit Data
Reg.est to Send S -, = 3 Request to Send
Clear to Send S - -9 Clear to Send
Carrier Detect 8 - - B Carrier Detect
Data Set Ready 6 ——, - b Data Set Ready
Data Terminal Ready 20 - - 20 Data Terminal Ready

B. INSTALLATION

Installation may be rapidly accomplished by connecting & null modem
cable to COM! for both the Master and Slave microcomputers. Install a
copy of Icopv.com 1n the same directory ac the Distrib.exe program.
The file Distrib.cfy and Distrib.phn should not be resident in this

directory, or the program may initialize the COM!1 ports to incompatible
settings. Execute the command "Distrib Master" at the MS-DOS prompt of
both machines. This should bring both programs up in the terminal
mode. Depress the Alt-M (Activate Master) key combination to access
the communications port settings and initialize COM1 for 9600 baud, 8
data bits, 1 stop bit and no parity (4800 baud for non - AT IBM FC
compatibles). Connect to the COM1 port and press ESC to exit the
secondary menu. The Master and Slave should be able to communicate as
glass teletypes to each other. 1If desired, change the default settings
for both microcomputers to the desired port parameters by selecting
Alt-C (Update Config File). This, when saved, will generate the
configuration file for the microcomputer. A similar procedure with
Alt-D will allow the creation of the telephone number file if desired.
Create an AUTOEXEC.BAT file <for the microcomputer(s) designated as
Slave and include the command "Distrib Server" to enter the Slave
program on power up. A similar file with "Distrib Master" will allow
the Master microcomputer tc assume that role on power up.

C. UNIT DEPENDENCIES

The following chart (Table B.1) illustrates the the dependencies of
the wvarious units in the program, as a guide to the visibility of the
data structures, procedures and functions in the interface section of
each program module, CRT and DOS are units supplied with the compiler.
All programs and unite depend on the System unit.

TAELE E. 1
UNIT DEFPENDENCIES

RT
s D et e e ik taat St EE P S

et St e e e T A atat L b B
DATACCH

B S e s S Tt e s St

i B el St it S R A e S S
B ettt T e e s pamatal L LS L S e

B ettt T e et S PN
B e i s S Ramarat At e e e A A e et et

T e it T e e i e it date i

UNIT/FROGRAM >
DEFENDS ON

Fad
[

[
o
<L

i

B R e T e e danta T e e

HO

<

procedures are found within the Distrib

rameter

T _Fa

range D

~

owing fu
[

Program Distrib

PROCEDURE/FUNCTION LIST

1.

B T ST s s Bt S e e s St
FINTER X

B e S o et St S S e e

e a a e aatatl T L L St
Tt s St S B e A e N Ratatat ST L SRR

BT e s e S e e e N h matatt TS

XMCDEM

program:

C'

bl
c.
d.

*l

gl
h.
i,

k.

UNIT

Mis
M.

P,
q.
r.

t.
u.
2

Ve
¥e

aa.
ab.
ac.

Comms_function
Dialing_Directory
Dial _Phone

Dirs

Dos_Shell
Get_Dial
Get_Equip
Handle_Alt_Key
Hangup
Operator_input
Operator_message
Process_command
Reset_remote
Remote_Command
Rlogin

Rx_File

Tx_File
Save_File

TTY

Datacom
Connected
DataComm_Error
Disable
Disable_Interrupts
Enable
Enable_Interrupts
Establish

He:BRyte

He:xWord

Furgelirne
Reset_Chip
RS222_Avail
RS232_Feek

5222_1In

RS232_Init
RS23Z_ISR1
RS23Z_ISR2
RS232_0ut
RS_Break
RS_Cleanup
RS_Eight_PRits
RS_Initialize
RS_Restore
SelectBitRate
SeiectFraming
SelectFarity
SelectWordLength
Send_EQO!I
Send_String

61

UNIT
a.
b.
C.
d.

UNITY

UNIT
a.
b.
c.

d.

f.

UNIT

AR T

I~ L - Ty ho QN

UNIT
a.

Director
GetAttribut
ShowDir
StandBy
ViewDir
WriteEntry

ErrorCod
Extended_Error_Code

General
Beep
Cursor_Size
Exchange
FillWord
Get_Time
Masx

Min

Miscpack
BumpStrUp

Parser

argc

argv

Init_parse
Farse
FarseName
Farser_main
Resolve_command

Redirect
Close_File_Handle
Duplicate_Handle
Init_Redirect_Unit
Redirect_All_Output
Redirect_Handle
Redirect_Std_Input
Recirect_Std_Error
Redirect_Std_Output
Restore_Std_Error
Restore_Std_Input
Restore_Std_QOutput
Festore_All_Output
Fecstore_CRT_Assignments

Spawn

Match_Command
Frocess_intrinsic_command
Run_Local

lo.

11.

UNIT
a.
b.
c.
d.
e.
f.
g.
h.
i.
J.
k.

UNIT
a.
b.
c.
d.

=)

f.
g.
h.
i.
Je
.
1.
M.
iy
G

M.

P
q.
r.

Support
Build_Status_Line

Checl:_Auxport
Check_Keyboard
Find_gEnvironment
GetEquip
Initialize
Modify_Entry
NoFile

Ok

Save_File

Yes

Wndow
Build_Borders
Close_Window

Get _Dummy_Screen
Get_Real _Screen
Get_Window
Init_Window_Info
Move_Window
Write_Status
Open_Window
Process_Window_Menu
Restore_Window
Save_Window
SetBackground
SetColor

Special _Processing

Xmodm
buf_to_string
Command_Xfer
Get_Buffer
Get_response
ReadAu:
Receive_Record
Respond_by_file
Send_CAN;
Send_EOT
Send_String
string_to_bu“
Sync_Receive
Send_Record
Sync_Send
Transfer _File
Update_Status
WriteAux
Xmodem_Xfer

APPENDIX C

XMODEM PROTOCOL

The following 1is an overview of the Xmodem protocol, as described
by the author. (Trimble, 1989).

A. MODEM PROTOCOL OVERVIEW 178 lines, 7.5K

1/1/82 by Ward Christensen. 1 will maintain a master copy of this.
FPlease pass on changes or suggestions via CBBS/Chicago at (312)
545-8086, or by voice at (312) B49-6279.

NOTE: this does not include things which 1 am not familiar with,
such as the CRC option implemented by John Mahr.

Last Rev: (none)

At the request of Rick Mallinak on behalf of the guys at Standard
0il with IBM F.C.s, as well as several previous requests, I finally
decided to put my modem protoccl into writing. It had been previously
formally published only in the AMRAD newsletter.

Table of Contents

DEFINITIONS

TRANSMISSION MEDIUM LEVEL PROTOCOL

MESSAGE BLOCK LEVEL FROTOCOL

FILE LEVEL FROTOCOL

DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY
FROGRAMMING TIFS.

[0 N - T 3% B

1. Definitions

<soh O1H
Teat 04H
Jack OSH
“nak: 15K
{canzx 18H

2. Transmission Medium Level Protocol
Asynchronous, 8 data bits, no parity, one stop bit.
The protoccl imposecs no restrictions on the contents of the
date wveiiny transmitted. No control characters are looked for in the

128-tyte data messages. Absoclutely any kingd of data may be sent -
binary, ASCII, etc. The protocol has not formally been adopted to a

&4

7-bit environment for the transmission of ASCII-only (or unpacked-hex)
data , although it could be simply by having both ends agree to AND the
protocol -dependent data with 7F hex before validating it. I
specifically am referring to the checksum, and the block numbers and
their ones-complement.

Those wishing to maintain compatibility of the CP/M file
structure, i.e. to allow modemming ASCII files to or from CP/M systems
should follow this data format:

ASCII tabs used (O9H); tabs set every 8.

Lines terminated by CR/LF (ODH OAH)

End-of-file indicated by ~Z, 1AH. (one or more)

Data is varieble length, i.e. should be considered a
continuous stream of data bytes, broken into 128-byte chunks purely
for the purpose of transmission.

A CP/M ‘“peculiarity": I+ the data ends exactly on a
128-byte boundary, i.e. CR in 127, and LF in 128, a subsequent sector
contairing the ~Z EOF character(s) is optional, but is preferred. Some
utilities or programs still do not handle EOF without "Is.

The last block sent 1is no different from others, i.e.
there is no "short block”.

3. Message Block Level Protocol
Each block of the transfer looks like:
CBOR b1k #:7255-b1k #:{--128 data bytes-->{cksum>

in which:

Z80H > = 01 hex

<blk # = binary number, starts at 0! increments by
1, and wraps OFFH to O00H (not to 01)

{255-blk #: = blk # after going thru 8080 "CMA" instr,
i.e. each bit complemented in the 8-bit block number.

Formally, this is the "ones complement".

<cksum’ = the sum of the data bytes only. Toss any
carry.

4, File Level Protocol
a. Common to Both Sender and Receiver

All errors are retried 10 times. For versions running
with an operator (i.e. NOT with XMODEM), a message is typed after 10
errors asking the operator whether to "retry or quit". Some versions
of the protocol use <cani, ASCII "X, to cancel transmission. This was
never adopted as a standard, as having a single "abort" character makes
the transmission susceptible to false termination due to an <ack» <nakrX
or +<soh: being corrupted into a <can’ and canceling transmission.

65

The protocol may be considered "receiver driven", that
is, the sender need not automatically re-transmit, although it does in
the current implementations.

b. Receive Progras Considerations

The receiver has a 10-second timeout. It sends a <nak>
every time it times out. The receiver’'s first timeout, which sends a
{nak>, signals the transmitter to start. Optionally, the receiver
could send a “nak: immediately, in case the sender was ready. This
would save the initial 10 second timecut. However, the receiver MUST
continue to timeout every 10 seconds in case the sender wasn’'t ready.

Once into a receiving a block, the receiver goes into a

one-second timeout for each character and the checksum. If the
receiver wishes to <nak> a block for any reason (invalid header,
timeout receiving data), it must wait for the line to clear. See
“programming tips" for ideas Synchronizing: If a wvalid block

number is received, it will be:

(1) The expected one, in which case everything is
fine; or

(2) a repeat of the previously received block. This
should be considered 0K, and only indicates that the receivers <ack:
got glitched, and the serder re-transmitted;

{3) any other block number indicates a fatal losc of
synchronization, such as the rare case of the sender getting a
iing—glitch that looked like an <ack:. Abort the transmission, sending
& CLoank,

€. Sending Program Considerations

While waiting for transmission to begin, the sender has
orly a single very long timeout, say one minute. In the current
protocol, the sender has a 10 second timeout before retrying. I
suggest NOT doing this, and letting the protocol be completely
receiver—-drivern. This will be compatible with existing programs.

When the sender has no more data, it sends an <eot’, and
awaits an fack>, resending the <eot> 1f it doesn’t get one. Again, the
protocol could be receiver—-driven, with the sender only having the
high-level 1-minute timeout to abort.

S. Data Flow Example Including Error Recovery
Here ic a sample of the data flow, sending a 3-block message,

which hendles the two most common line hits - a garbaged block, and an
Zach ™ reply getting garbaged. xx: represents the checksum byte.

b6

FIGURE C.1

DATA FLOW EXAMFLE

SENDER RECEIVER
times out after 10 seconds,
{=—= {nak>
<soh> 01 FE -data- <xx> —--—=
L= {ack?>
<soh> 02 FD -data- x»x - (data gets line hit)
L <nak:
Zsoh> 02 FD -data- xx —=
L —— <ack:
{soh> 03 FC -data- ux -
(ack gets garbaged) <--—-~ <ack>
{soh* 03 FC -data- xx -—=> <ack>
‘eot’ —_—=
== <acksr

6. Programming Tips

The character-receive subroutine should be called with a
parameter specifying the number of seconds to wait. The
receiver chould first call it with a time of 10, then <nak:> and
try again, 12 times.

After receiving the <soh’, the receiver should call the
character receive subroutine with a l-second timeout, for the
remainder of the message and the <cksum>, Since they are sent
as a continuous stream, timing out of this implies a serious
lite glitch that caused, say, 127 characters to be seen incstead

‘™

of 128,

When the receiver wishes to <nak>, it should call a "FURGE"
subroutine, to wait for the line to clear. Recall the sender
tosses any characters in its UART buffer immediately upon
completing sending a block, to ensure no glitches were mis-
interpreted.

The most common technique is for "PURGE" to call the
character receive subroutine, specifying a l-second timeout,
ar:d 10oping back to FURGE until & timeout occurs. The <nak: is
then sent, ensuring the other end will see it.

You may wish tc add code recommended by Jonh Mahr to your
character receive routine - to set an error flag if the UART
shows framing error, or overrun. This will help catch a few
more glitches - the most common of which is a hit in the high
ite of the byte in two consecutive bytes. The <cksum> comes

&7

out OK since counting in l-byte produces the same result of
adding BOH + BOH as with adding 0OOH + OOH.

68

APPENDIX D

MAINTENANCE MANUAL FOR DISTRIB PROGRAM

A. PROGRAM DISTRIB

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
C. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description
Distrib is the main program for both the Master and
Slave computers operating in the distributed processing network. The
main program loop initializes the window unit, saves the current
directory and the current screen image for restoration on program
terminztior, and then calls Initialize in the Support Unit to establish
the communications port parameters, screen colors, dialing directory,
and other default parameters. The program then examines the command
tail following the program name when it was called from the operation
eystem and takeec one of the following actions:

(1) Command tail iz NIL or "Server". If nothing is
specified after the program name, or the word "Server" is found as the
first command line parameter, the program assumes it is to operate as a
remaote Slave or Server and enters a processing loop to wait for a
command packet from its communications port. A local screen display is
available showing & program version banner and a monitor window showing
commands received and responses generated. tocal keyboard input after
this point will abort the program, reverting the computer to local use.

(2) Command tail is "Master". If the word "Master" is
found as the #$irst command line parameter, the program enters the
terminal mode through the default communications port and awaits
operator action at the local keyboard., If a remcte Slave computer is
connected, NAK symbols will be displayed periodically as the remote
computer awaits a command. A status line is displayed across the 25
line of the screen and HELF is aoffered to the 1local operator if the
HOME key is depressed. HELF displays a list of available commands to
initiate file transfers or run remote programs.

2. Subroutines Contained

a. Dial _Phone
{:) Type: Procedure

69

(2) Purpose: To dial a selected telephone number on a
Hayes compatible modem connected to the modem port.

(3) Description of Parameters: 1[I is the entry number
to be dialed that was selected by the user from the Dialing_Directory
procedure that follows. Demon_Dial, if TRUE, repeat dials the entry
until the modem reports a connection. This procedure changes the COMM
port selection stored in the DataCom Unit variable Current_Com to the
modem port, and leaves it there.

(4) Subroutines Called:

Flush_Buffer (dumps the receive buffer)

DataCom.Connected

DataCom.RS_Initialize

DataCom.RS_Cleanup

DataCom.RS2322_In

DataCom.RS232_Avail

DataCom.Send_String

CRT.CIrEOL

CRT.ClrScr

CRT.Delay

CRT.GoToXY

Wndow. Beep

Wndow.Get_Window

Wndow. Open_Window

Wndow.Close_Window

(3} Process Description

Given the dialing directory entry to dial, the
procedure initializes the modem port according to information stored in
the dialing entry data structure Support.Phone_Stuff; and sends a
string to the modem to dial the number. If repeat dialing is selected,
a window is displayed showing the progress of the call.

b. Get_Dial
(1) Type: Frocedure
(2} Purpose: This procedure allows the operator to
select a telephone number to be dialed.
(%) Description of FParameters:
Input: Support.Fhone_Menu (the list of available
numbers)
Output: The #function returns the order of the
n'th phone list entry
(4) Subroutines Called:
Wndow.Open_Window
Wndow.Frocess_Window
{8 Process Description
The procedure calls Open_Window with parameter
Fhorne_Menu from the Support Unit to display a menu of telephone numbers
cortained in the file DISTRIB.FHN, and allows the operator toc select
ore with & menu bar.

c. Dialing_Directory
1} Type: Frocedure

70

(2) Purpose: To allow the user to dial, modify, add
or delete any telephone number entry in the data structure
Support.Fhone_Stuff.

(Z) Description of Farameters: none.

(4) Subroutines Called:

Get_Dial (displays the list of telephone numbers
that are available)

CRT.GoToXY

CRT.ClrEOL

CRT.ClrScr

Support.Modify_Entry

Support, 0K

System.FreeMem

System.GetMem

System.Move

System.S1ze0f

wWndow.bet_Window

Wndow. Open_Window

Wndow.Close_Window

(&) Frocess Description

This procedure first displays a window allowing
the operetor to cdiel, modify, add or delete any number in the data
cstructure Support.Fhone_Stuf+f. If dial 1is selected, the number is
dialed and the program returns to terminal mode. If modify or delete
1 selected, & list of available names attached to known telephone
rembers 1e cdisplayec for selection. If a number 1is to be added, a
blant parameter table ic displayed for data entry. On completion, the
cperéts- 1e offered the opportunity to save the added number to the
file DISTRIB.FWM, trrough & call to Modify_Entry. ESC returns to the
terminzl rzg=.

d. Dirs
1Y Type: Frocedure
{2y Furpose: Tc allow the user to display the locsal
dist director,,
(Z» Description of Parameters: none.
(&7 Subroutinez Called:
CRT,GaTaXy
CRT,C1rS50
CrRT.CirScr
DCS.Find_Firs+
[0S, Find_Nevt
Sycstem.ChDir
Syctem,.GetDir
System.Readt ey
Wrdow, Jpen_Window
Wndow.Close_Window
i< Frozess Descraiption
Thie procedure prompts the user for a path
sperification ard direztory mash similar to that used by the MS-DOS DIR

command and then displays the directory for that specification a screen
at a time. Capabilities similar to DIR #.% and DIR %.*/w are provided.

e. Change_DC_Parameters
{1) Type: Procedure
2) FPurpose: To allow the user to select speed,
parity, worcd length and stop bit parameters for the COM port specified
by DataCom.Current_Com.
(Z) Description of Parameters: DataCom.Current_Com
(4) Subroutines Called:
CRT.CirScr
DataCom.RS_Initialize
DataCom.RS_Cleanup
Wndow.Open_Window
Wndow.Close_Window
Wndow.Process_Window
(S5) FProcess Description
This procedure offers a selection of parameter
combinations for the currently selected COM port and allows the port to
be configured accordingly. A menu bar seiection is used.

f. Hangup
(1Y Type: Procedure
{(2) Purpose: To hang up the modem,
{(Z) Description of Parameters: DataCom,Current_Com
(4) Subroutines Called:
CRT.Delay
DataCom.RS232_In
DataCom.RS232_Avail
DataCom.RS_Initialize
DataCom.RS_Cleanup
DataCom.Send_String
(§vY Process Description
This procedure places the modem 1n command mode
and sends & disconnect command string to the Hayes compatible modem
connected to the current communications port.

g. Operator_Input

(1) Type: Function

i2) Furpose: To obtain a string input from the
operator.

3) Description of Parameters: Title 1s a string
typed in the Wndow Unit that is to be displayed on the window; Frompt
ie a string written in the window area specifying what the operator is
tc enter.

(4) Subroutines Called:

CRT.ClrScr
Wndow. Open_Window
Wndow.Close_Window

(3) Process Description
This function opens a titled window and waits for
the operator to type a string. The string is returned as the function
result.

h. Operator_Message

(1) Type: Function

(2) FPurpose: To inform the operator with a string
message, usually of <some error condition that is to be temporarily
displayed.

(3} Description of Farameters: Title 1is a string
typed in the Wndow Unit that is to be displayed on the window; Message
ic the string message to be provided to the operator. Note that this
function depends on the calling program to close the window.

{4) Subroutines Called:

CRT.ClrScr
Wrdow. Open_Window
(57 Process Description
This function opens a titled window and places the
message string in the window.

i. Process_Command

(1) Type: Function

(2) Purpose: To operate the computer as & Slave,
process all reguests to initialize COM ports, transfer files between
Macter ancd Slave computers, remotely operate a Slave computer, or reset
the connection between computers.

(Z) Description of Parameters: The function returns
to the caliing program an enumerated state variable defined in the Unit
Xmodm cepending or the successful dispatch of a command to & Slave
computer and the vreceipt of the response, or an indication that the
loczl operator hes aborted the operation by pressing a key. The
keypressec indication 1s typically all that 1s of i1nterest, since the
function mormally celiled repeatedly.

{4) Subroutines Called:

CRT.Z1lrScr
CRT.GoTaXxy
Syetem.Readk ey
W~dow. Open_Window
Wndow.Close_Window
Wndow.Get _Window
Wndaow.Frocess_Window
Xmodm.Buf_to_String
Amodm. Command_Xfer
Xmodm.Sens_CAN
Xmodm, String_to_buf
Xmodm.Respond_by_file
‘57 Proress Description
The 1nitial state of the communications link is
‘érom Master tp Slave fthis process). This functior operse a small
status window 1ndiceting whether 1t is awaiting a remote commanc,

parsing a received command for local execution, or completing the
command execution. It does so in this sequence: First, a loop is
entered that repeatedly calls the function Xmodm.Command_Xfer. On
successful receipt (status = Rx_done), the command is converted from an
Xmodem packet into & string and passed to Parser.Parser_main for
execution. The communications link also switches direction, with the
Master expected the Slave to initiate Xmodem packet transmissions.
This procedure returns any error indication from the 1locally executed
procedure or spawned program as a string in the variable Error_Msg,
along with a typed variable Errtype indicating whether the response is
a file (for program results or output) or a simple string variable or
nothing at all (NULL string)., Errtype is used in a following CASE
construct to send the file specified by a complete drive and path
specification in Error_Msg back to the Master computer, or to forward
Error_Msg as & packetized string utilizing the Transmit option of
Xmodm.Command_Xfer. Similarly, this procedure returns any output from
the 1locally executed procedure or spawned program as a string in the
variable Response, alorig with & typed variable Restype indicating
whether the response is a file (for program results or output) or a
simple string variable or nocthing at all (NULL string). Restype 1is
used in & following CASE construct to send the file specified by a
complete drive and path specification in Response back to the Master
computer, or to forward Response as a packetized string utilizing the
Transmit option of Xmodm,Command_Xfer. The Master computer expects a
response of thic type over the communications line when it detects the
cuccessful command transfer, Note that the normal exit condition for
the Command_Xfer loops throughout this function is Rx_Done or Tx_Dane.
The Master computer will continue to display responses from the Slave
until a CAN character is received., At this point, the function returns
with the last valid status of the Command_Xfer functicn, and the
communications link again switches to the beginning state, with the
€lave waiting on transmissions from the Master. Error indications
other than that in Errsor_Msg short circuit the program execution
through this function, send & CAN character to the Master, return the
communications link to its initial state, and leave the function with
&n error status,

Jj. Reset _Remote
(1% Type: Frocedure
‘2 Purpose: This subprocedure of the Comms_Function
allows the operator to recover control of the Slave computer if
synchronization is lost over the communications link.
{Z) Description of Farameters: None.
(4) Subroutines Called:
Update.Status (local to Comms_Function’
*meodm, Send_CAN
(i Frocess Description
Thie procedure sends four CAN characters out on
tre communicetione lint to the Slave. The Frocess_Command function
‘deccribed abovedl 1¢ serncitive to the receigt of CAN characters and
will e 1t the function early with an error status. The calling program

74

simply loopse into the Process_Command function again and awaits a
command.

k. Remote_Command

(1) Type: Function

(2) Purpose: This subfunction of Comms_Function
function accomplishes one cycle of a Master to Slave command and
response over the communications port.

(3) Description of Parameters: The +function 1is
entered with a string containing the command to be executed. The
function returns to the calling program an enumerated state variable
defined in the Unit Xmodm depending on the successful dispatch and
execution of a command by the Slave computer, or an indication that a
local operator has aborted the sequence by depressing a key. The
keypressed indication 1is typically all that is of interest, since the
function normally called repeatedly. '

(4) Subroutines Called:

System.Readkey

Xmodm.Command_Xfer

Xmodm.String_to_buf

{2} Process Description

This function is currently called by Get_Equip to
perform & single command cycle; or Rlogin to repeatedly cycle and allow
the operator to remotely operate the Slave computer from the Master
keyboard 1in a manner similar to the DOS prompt. It does so in this
sequence: First, a loop is entered that repeatedly calls the <function
Xmodm.Command_Xfer to pass the command string to the Slave. On
successful transmiscsion {status = Tx_done) , function
Amodem.Get_Response displays the packetized response from the Slave on
the Master monitor window. The Master continues to display responses
from tke Slave until the Slave sends a CAN character, indicating
comgleticrn of the all responses, or the Master operator depresses a key
to brear the cycle. At this point, the function returns with a boolean
1ndication ot the success of the transfer
(TRUE = success, FALSE for any keypress during the cycle).

1. Rlogin
{1y Type: Procedure
(2) Furpose: This subprocedure of the Comms_Function
function cycles the Remote_Command function and allows operator input
of commands to the Slave until aborted by the operator.
I} Description of Farameters: None.
{4) Subroutines Called:
Update.Status (local to Rlogin)
CRT.ClrScr
Distrib.Remote_Command
Distrib.Reset_Remote
Distrib.0Operator_Input
Wndow.DOpen_Window
Wndow.Close_Window
Wrdow. 5et_Window

(5) Process Description

At the beginning, this procedure opens a full
screen window to display all responses from the Slave in much the same
way a local operator would view them. The procedure then calls
Remote_Command initially with a command string requesting a prompt from
the remote system so that the operator can determine the current
directory of the Slave. if that succeeds, the Master operator is
prompted for a command to send to the Slave by Operator_Input. Remote
processing may be terminated by entering an exclamation point ("!'")
whereupon the operator is asked to confirm the termination. Remote
processing also terminates if Rlogin returns a FALSE result. On exit,
the procedure closes the monitor window and exits.

m. Rx_File
(1) Type: Procedure
(2) Purpose: This subprocedure of the Comms_Function
function initiates a file transfer from the Slave to the Master by
using an adaptive file transfer program, Zcopy.
(Z) Description of Parameters: None.
(4) Subroutines Called:
Update.Status (local to Rlogin)
CRT.ClrScr
Distrib.Remote_Command
Distrib.Operator_Input
System.E:ec
Wndow. Open_Window
Wndow.Close_Window
Wndow.Get_Window
Xmodm.String_to_buf
{S! FProcess Description
This procedure opens a full screen window to
display the operation of the Zcopy file transfer program, and prompts
the operator for the name of the file to receive, This file is assumed
to be in the current directory of the Slave unless a full path 1¢
specified. Once the file name 1is obtained, a command string is
assembled to send to the Slave to initiate the tramsfer. The procedure
is terminated if the command transfer iz interfered with by a keypress
at the Master. Once the Slave acknowledges receipt of the command, the
Master initiates the Zcopy program locally, using a different format to
operate as a server under the temporary control of the Slave. The
operator is provided prompting information from the Zcopy program in a
full screern window 1f a file must be overwritten or lcopy
synchronization 1is not achieved. Once completed or terminated, the
procedure displays the Zcopy display output from the Slave computer for
error diagnostics (if needed), closes all opened windows and exits.

Ne Tx_File
(1) Type: Procedure
{2) Purpose: This subprocedure of the Comms_Function
function 1ritiates & file transfer from the Master to the Slave by
vsing eén adaptive file transfer program, Zcopy.

7¢&

(3) Description of Parameters: None.
(4) Subroutines Called:
Update.Status (local to Rlogin)
CRT.ClrScr
Distrib.Remote_Command
Distrib.Operator_Input
System.Exec
Wndow,Open_Window
Wndow.Close_Window
Wndow.Get_Window
Xmodm.String_to_buf
(5) Frocess Description
This procedure opens a full screen window to
display the operation of the Zcopy file transfer program, and prompts
the operator for the name of the file to transmit. This file is
assumed to be in the current directory of the Master unless a full path
is specified. Once the file name is obtained, a command string is
assembled to send to the Slave to initiate the transfer. The procedure
is termirated if the command transfer is interfered with by a keypress
at the Master. Once the Slave acknowledges receipt of the command, the
Master initiates the Zcopy program locally, operating as a file
transfer master with the Slave operating as a Slave. The operator is
provided prompting information from the Zcopy program in a full screen
window if a file must be overwritten or Zcopy synchronization is not
achieved. Once completed or terminated, the procedure displays the
lcopy display output from the Slave computer for error diagnostics (if
rieedec), closes sl1 opened windows and exits.

o. Get_Equip
(1) Type: Frocedure
(2) Purpose: This subprocedure of the Comms_Function
function displays the communications port and floppy disk configuration
of the Slave computer.
{3} Description of Parameters: None.
(4) Subroutines Called:
Update.Status (local to Rlogin)
CRY.ClrScr
Distrib.Remote_Command
Distrib.Operator_Input
Wndow.Open_Window
Wndow.Close_Window
(S5} Process Description
Utilizing the Remote_Command function, this
procedure dispatches the command string "Equip" to the Slave, which 1is
processed in the Slave program to obtain BIOS information via BIOS call
#11. On ex1t, the procedure closes the remote monitor window and
exits.

p. Comms_Function
(1Y Type: Function

77

{2) Purpose: To process operator requests to
initialize COM ports, transfer files between Master and Slave
computers, remotely operate a Slave computer, or reset the connection
between computers.

(3) Description of Parameters: The function returns
to the calling program an enumerated state variable defined in the Unit
Xmodm depending on the successful dispatch of a command to a Slave
computer and the receipt of the response, or an indication that the
local operator has aborted the operation by pressing a key. The
keypressed indication normally allows the operator to make another
selection or to leave this function.

(4) Subroutines Called:

Update.Status (for 1local display of the system
state)

CRT.ClrScr

CRT.GoToXY

Distrib.Remote_Command

Distrib.Rlogin

Distrib.Rx_File

Distrib.Tx_File

Distrib.Get_Equip

System.ReadKey

Wndow. Open_Window

Wndow.Close_Window

Wndow. Get _Window

Wndow. Process_Window

Xmodm. EBuf _to_String

Xmodm.Command_Xfer

¥modm. Send_CAN

Xmodm.String_to_buf

Xmodm.Respond_by_file

(S Frocess Description

Thiz function opens a window showing the
parameters for the current communications port, and a second window to
allaw the operator to select one of the +following functions:
Irnitialize a port, change to a different port and enable the receive
interrupts, disable a receive interrupts for a port, send a file to the
Slave computer, receive a file from the Slave, obtain the port and disk
configuration of the Slave, operate the Slave remotely, reset the
current Xmodem link, and leave the function. It does so by calling one
of the following procedures or functions local to Comms_Function by a
CASE selection: Distrib.Remote_Command, Distrib.Rlogin,
Distrib.Rx_File, Distrib.Tx_File, Distrib.Get_Equip.

q-. DOS_Shell
(1) Type: Frocedure
(2) Purpose: This procedure spawns a copy of the
MS-DOS command processor to allow the operator of the Master computer
to perform DOS functions while retaining the control program. Control
is returmred to the Master program on exiting the secondary processor.
(Z) Description of Parameters: None.

78

(4) Subroutines Called:
CRT.CIrEOL
CRT.ClrScr
CRT.Delay
Distrib.Find_Environment
Support.OK
System.ChDir
System.GetDir
System.Exec
Wndow.Open_Window
Wndow.Close_Window

(3) Process Description

The procedure first locates a copy of the DOS
command processor by finding the "COMSPEC=" path specification in the
current environment. This is established on startup of the computer
and is normally passed down to the application program for its use.
Once this complete file specification 1is obtained, the operator is
informed that the DOS shell will be activated and a full screen window
is opened to save the current screen. When the operator terminates the
secondary command processor by entering "EXIT" at the prompt, the
procedure restores the original disk drive and directory, notes any DOS
errore returned, and returns to the terminal screen. If the COMSFEC
environment parameter cannot be found, the procedure informs the
cperator, obtains acknowledgment, and exite.

r. Handle_ALT_Key
(1) Type: Procedure
{2} Purpose: This procedure dispatches the program to
unction selected by the operator as an ALT-key. A help
¢ provided as offered on the status line.
(3) Description of Farameters: E is the high order
byte read from the keyboard and is used as a CASE selector
{4) Subroutines Called:
CRT.ClrEOL
CRT.ClrScr
CFT.Delay
DataCom.RS_Ereak
Distrib.Change_DC_Farameters
Distrib.Comms_Function
Distrib.Dialing_Directory
Distrib.Dirs
Distrib.DOS_Shell
Distrib.Hangup
Distrib.Handle_ALT_key (the procedure calls itself
atte- processing the help menu)
Support.Build_Status_Line
Support.Modify_Entry
Support. Ok
System,ChDir
Wrndow, Beep

"
|.ﬂ ‘U

arti ar fu
12 35

1
P
1e al

LL

P

79

Wndow.Close_Window
Wndow.Open_Window

Wndow. Process_Window_Menu
Xmodm. Transfer_File

{3) FProcess Description
The functions offered by this procedure are:
Alt-A: Change Drive and Path
Alt-B: Send a Break signal out of the current COM

port

Alt-C: Clear the screen

Alt-D: Dial a telephone number and connect by
modem

Alt-E: Toggle the 1local Echo for half duplex
communications

Alt-F: Change the default communications
parameters

Alt-G: Show the current directory

Alt-H: Hang up tre modem

Alt-L: Open the DOS Shell

flt-M: Activate the Master

Alt-F: Activate the Master

Alt-R, PgDn: Receive a file via Xmodem

Alt_S: Activate the Server

Alt-T, PgUp: Transmit a file via Xmodem

Alt-X: Terminate the program

Hame: Display a help screen of these commands and
allow selectior by menu bar

S. TTY
‘17 Type: Frocedure
{2) FPurpose: This procedure provides a teletype

emulation augmented by ANSI control functions.
(3) Description of Farameters: ANSI = TRUE indicates
the procedure acte as an ANSI terminal emulator.
(4} Subroutines Called:
WritelLF (process a line feed)
DOS Interrupt %10 (Video Display)
CRT.ClrScr
CRT.Del ay
Wndow. Open_Window
Wrndow.Close_Window
Support. Ok
System.ChDir
System.GetDir
System.Exec
(%) Process Description
The procedure filters characters generated by the
keyboard and arriving from the communications port in the terminal mode
to emulate an ANSI termirmal. ALT-key combinations are intercepted from
the keyboard and processed by Handle_ALT_Key.

80

APPENDIX E

MAINTENANCE MANUAL FOR UNIT DATACDM

A. UNIT DATACOM

1. Configuration Informsation
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
C. Target Hardware - IBM PC/AT or close compatible
d. Operating Systems - Microsoft MS-DOS (Version 3.x)
e. Program Description
Frovides all procedures and functions needed to
initialize the computer serial communications ports, enable and disable
receive interrupts, provide buffered reception of characters, clear the
receive buffer(s), send or receive bytes through the ports, send a
BREAE signal over the RS-2I2 port, and nondestructively read the
receive bufferi(s), Supports Unit Xmodem and the terminal portion of
Distritb. The currently selected communications port is contained in
public variable Current_Com.

2. Subroutines Contained

a. Disable_Interrupts
(1) Type: Frocedure
(2) Furpose: To permit a Pascal procedure to disable
system interrupts.
(Z) Description of Farameters:
Input: None.
Output: System interrupts are disabled.
{4) Subroutines Called:
Inline assembly.
(S) Procese Decscription
The assembly inetruction to mask off interrupts at
tte CFU 1s inserted i1nto the code stream at compile time.

b. Enable_Interrupts
(1) Type: Frocedure
(2} Purpose: To permit a Pascal procedure to enable
system interrupts.
(3) Description of Farameters:
Input: None.
Qutput: System interrupts are enabled.
(4) Subroutines Called:
Inline assembly.

81

(5) Process Description
The assembly instruction to unmask interrupts at
the CPU is inserted into the code stream at compile time.

c. RS232_1SR1
(1) Type: Procedure
{(2) Purpose: The interrupt service routine for
communications port one.
(3) Description of Parameters:
Input: An interrupt vector call initiated from
communications port one.
Dutput: The received character is placed in a
buffer.
(4) Subroutines Called:
DataCom.Disablelnterrupts
DataCom.Erablelnterrupts
System.Fort
{S) Process Description
System interrupts are temporarily turned off to
service this interrupt. The UART Line Status Register for
communications port one is read to record any error indications, then
the Receive Buffer Register is read to place the character in the
receive buffer. The buffer tail pointer is advanced and an End of
Interrupt command is sent to the Frogrammable Interrupt Controller to
signal the end of the interrupt service call.

d. R6232_ISR2
{1y Type: Frocedure
(2} PFurpoce: The interrupt service routine for
communications port two.
{3) Description of Parameters:
Input: An interrupt vector call initiated from
communications port two.
Dutput: The received character 1is placed in a
buffer.
(4) Subroutines Called:
DataCom.Disablelnterrupts
DataCom.Enablelnterrupts
System.Fort
{3) Frocess Description
System interrupts are temporarily turned off to
service this interrupt. The UART Line Status Register for
communications port two is read to record any error indications, then
the Rece:ve Buffer Register is read to place the character in the
receive buffer, The buffer tail pointer is advanced and an End of
Interrupt command is sent to the Frogrammable Interrupt Controller to
signal the end of the interrupt service call.

e. RS_Break
1) Type: Frocedure

(2) Purpoce: To instruct the UART on the currently
selected communications port to send and RS-232 BREAK signal.,
(3) Description of Farameters:
Input: Current_Com (public)

Cutput: A break signal is generated on the
currently selected communications port.
(4) Subroutines Called:
CRT.Delay
System.Fort

(S) Process Description
This process ORs the current contents of the UART
Line Control Register with constant LCR_PBREAE to instruct the UART to
send a constant space on the output line. A& UART receiving this will
set i1te LSR_BREAE to signal a BREAK received. After a delay of about
1/5 second, the line is restored.

f. RS232_Avail
1Y Type: Funmction
(ZY Furpose: Informs the calling program that
received characters are available to be read from the current
commurrcstions oort,
{2} Descriptiorn of Farameters:
Input: Currernt_Com f{public)
Outout: TRUE 1f characters available, FALSE

f&y Subroutines Called: None.
(&) Prozess Description
The buffer pointers RS_Buf_Head [Current_Com]
and RE_Bu+s_T:z:il L Cwrent _Corm J will be egual if the buffer 1z emptvy,
the fenctior returne the result of thic test,

g. Purgeline
‘1) Type: FProcedure
(2) Furpess: Dump the receive buffer and clear the
UART receive registers. Used to cles- the communications line prior te
sn ¥mader pechket receptiorn (Chricstensen, 1982, p. 30,
{3y Description of Faramesters:
Inout: Current_Com {(public)
Qutput: The internal buffers are cleared.
t4: Subrouvtines Called:
Syetem,Fort
v Process Deccription
The buffer pointers RS_Buf Head [Current_Com 13
an? RE _But _Te1i1 [Currert_Com 3 are both set to their initial
conditiors (rerc’ and the UART receive regicter is read to reset any
percding receive interrunt,

h. Connected
{1y Type: Function

(2) Purpose: Returns TRUE if the currently selected
communications port is receiving a hardware handshaking signal,
indicating the presence of a modem or a directly connected computer.

(3) Description of Farameters:

Input: Current_Com (public)
Output: TRUE if connected, FALSE otherwise.
(4) Subroutines Called:
System.Port
(8) Process Description
The UART Modem Status Register is read to detect
the presence of Data Carrier Detect. This line is normally TRUE if a
modem or computer is connected .

i. RS_232_Peek
(1) Type: Function
(2) Purpose: Nondestructive read of the receive
buffer of the current communications port. Used to assist Xmodem
synchronization in Unit Xmodm.
(3) Description of Parameters:
Input: Current_Com (public)
Output: The next available received character.
(4) Subroutines Called:
CRT.Delay
(&) Process Description
The receive buffer pointers are compared for the
currently selected communications port. If unequal, & character Iis
available, I+ egual, a short delay is run and the test is repeated.
Wrer & character is available, 1t 1is5 returned from this function
without disturbing the pointers.,

J. RS_232_1In
{1} Type: Function
(2) Furpose: Read the next character from the the
receive buffer of the current communications port, Used for all port
reads.
{2} Description of Farameters:
Input: Current_Com (public)
Output: The next available received character.
(4 Subroutines Called:
CR7.Delay
{3) Proce-s Description
The receive buffer gpointers are compared for the
currently selected communications port. If unequal, & character is
availabie. If equal, a short delay is run and the test 1is repeated.
When & character 1s available, it is returned from this function and
the buffer head pointer is advanced.

k. RS_232_0Out
(1) Type: Procedure.

(2) Purpose: Send a character out of the currently
selected communications port. Used for all port writes.
(3) Description of Parameters:
Input: Current_Com (public); and Param, the
character to be sent.
Output: The character i1is sent to the port.
RS_Error (public) is cleared.
(4) Subroutines Called:
CRT.Delay
System.Port
(3) Process Description
The UART Line Status Register is checked on the
currently selected communications port to see if the last character has
been sent. If not, a short delay is runand the test is repeated. When
the buffer 1is clear, the port Modem Control Register Request To Send
and QUT2 lines are set to insure the hardware is prepared to send a
character. Next, the corresponding Data Set Ready and Clear To Send
status lines are checked and short delays run until they are true, 1if
the options are selected, Last, the character is sent to the port and
the error flag is cleared.

1. Enable
(1) Type: Frocedure
(2) Purpose: Enable receive interrupts for a

communications port.
(Z) Description of Farameters:
Input: IRE.
Qutput: The proper Interrupt Mask Bit in the
Frogrammable Interrupt Controller 1is cleared for the communications
cort.
{4) Subroutines Called:
System.Fort
(&) Frocess Description
The procedure maskes off the selected bit in the
FIC Interrupt Mask Register.

m. Disable
(1) Type: Frocedure
(2} Purpose: Disable receive interrupts for a
communications port.
(Z) Description of Farameters:
Input: IRGQ.
Output: The proper Interrupt Mask Bit in the
Programmable Interrupt Controller is set for the communicationg port.
(4) Subroutines Called:
System.Fart
(3) Frocess Description
The procedure sets the selected bit 1n the FPIC
Interrupt Mast Register.

n. Establish
{1) Type: Procedure
(2) Purpose: Enable the Data Terminal Ready, 0OUT2 and
Request To Send handshaking bits on the selected communications port.
(3) Description of Parameters:
Input: Com, the communications port to be
enabled.
Dutput: The appropriate lines are set.
(4) Subroutines Called:
System.Fort
{S) Frocess Description
The OR combination of the Data Terminal Ready,
OUTZ and Request To Send handshaking bits are set.

0. Send_EO1I
(1) Type: Procedure
(2) Furpose: Sends a specific End Of Interrupt
command to the 8259 Programmable Interrupt Controller to indicate that
& particular interrupt hzs been ser-viced.
() Description of Parameters:
Input: IRE, the interrupt serviced.
Output: The Interrupt Service Register bit for
the specific interrupt is cleared.
(4) Subroutines Called:
System.Fort
{S) Process Description
The bit for specific interrupt is OR'd with %60
and sent to the FIC,

p. Reset_Chip
(1) Type: Frocedure
(2} Furpose: To shut down a communications port.
() Description of FParameters:
Input: Com, the port to be disabled.
Output: The port is cleared, all handshaking
lines are cleared, and interrupts are disabled on the UART.
(4} Subroutines Called:
System.UrCase
Svstem.Length
(%! Frocess Description
The UART Line Status Register is read repeatedly
to clear all receive buffars. The system interrupts are disabled to
prevent further interrupts from this port. The interrupts from the
UART are disabled, and all port handshaking lines are dropped. The
Frogrammable Interrupt Controller interrupt enable line for this port
is reset. System irterrupts are then restored.

q. RS232_1Init
{1y Type: Procedure
(2r Purpose: Initialize the selected communications
port.

B&

(3) Description of Parameters:
Input: COM, the port to be initialized; and
Farams, the port parameter word.
OQutput: The port is initialized.
(4) Subroutines Called:
DOS. Intr($14), the communications port service
interrupt.
(S) Process Description
Com is adjusted to satisfy the requirements of
Intr (¥14) and register DX loaded with the communications port to be
initialized. The packed word, Params, is loaded into register AX and
the interrupt is called.

re SelectBitRate
(1) Type: Procedure
(2) Purpose: Initialize the selected communications
port. (%) Description of Parameters:
Input: COM, the port to be initialized; and
Speed, the date rate for the port.
Qutput: The port is initialized.
(4) Subroutines Called:
System.Fort
System.Fortw
(5) Process Description
The communications port identified by Com is
accessed and its Divisor Latch Access Rit is set to access the bit rate
registers. The Speed parameter is mapped into a 16 bit control word
and placed i1n the URRT Divisor Latch. The Divisor Latch Access Bit is
then cleared and the port 1s allowed to settle. The current baud rate
csetting 1=z stored in the port initialization record for later
reference.

S. SelectWordlLength
1) Type: Frocedure
{(2) Furpaose: Initialize the selected communications
port,
(%) Description of Farameters:
Input: COM, the port to be 1initialized; and
Lerngth, the word length for the port.
Output: The port is initialized.
(4) Subroutines Called:
Svstem.Part
System.Fortw
(3) Frocess Description
The Speed parameter is mapped into an B8 bit
control word and placed in the UART Line Control Register. The current
length setting i1s stored in the port initialization record for later
reference.

t. SelectFraming
1} Type: Frocedure

87

(2) Purpose: Initialize the selected communications
port.
(Z) Description of Parameters:
Input: COM, the port to be initialized; and Stop,
the number of stop bits for the port.
Output: The port is initialized.
(4) Subroutines Called:
System.Port
System.Portw
{S) Process Description
The Stop parameter is mapped into an 8 bit control
word and placed in the UART Line Control Register, The current stop
setting is stored in the port initialization record for later
reference.

u. SelectParity
(1) Type: Procedure
2} Purpose: Initialize the selected communications
port.
(3) Description of FParameters:
Input: COM, the port to be initialized; and P,
the type of parity for the port.
Output: The port is initialized.
(4) Subroutines Called:
System.Port
System.Fortw
{S) Process Description
The F parameter is mapped intoc an &8 bit control
word and placed in the UART Line Control Register. The current stop
narity 1e stored in the port initialization record for later reference.

V. Send_String

(1} Type: FProcedure.

{(Zi Purpose: To send an ASCII string of characters
out the currently selected COM port. Typically used to send command
strings to a mcodem.

(%} Description of Farameters:

Input: §, the string to be sent.
Output: The string is sent out the currently
selected COM port.

(4) Subroutines Called:

DataCom.RS232_0Out
System.Length
{S%) Process Description
The string is treated as an indexed array of
characters, and each character i1s sent to procedure RS232_0Out in turn.

w. RS_Initialize
(1) Type: Frocedure.
{2} Purpose: To set the communications port to the
1input parameters,

88

(3) Description of Parameters:

Input: Com, the port to be initialized; Speed, an
enumerated type ranging from 110 baud to 9600 baud; Parity, an
enumerated type specifying No Parity, Odd, Even, or Don’'t Care; The
number of stop bits (1 or 2) and the length of the character word (5,
by 7 or 8 bits).

{3) Output: The communications port is initialized.
(4) Subroutines Called:

DOS. Intr(#14) (BIOS communications port service)

DOS.SetIntVec

System.Port

(S) Process Description

Com and the input parameters are adjusted for the
RIOS call. The BIOS call initializes the port, however, it also
disables UART receive interrupts. These are enabled separately and the
UART Divisor Latch Access Bit is cleared to insure that further writes
to the UART will set the proper registers. The UART is recycled and
the hardware handshaking lines set. Receive interrupts are enabled at
the UART, and the Frogrammable Interrupt Controller is enabled for the
current communications port. The proper interrupt vector for this port
is set to point to our interrupt service routine. The settings stored
in data structure CommPort [Com] for future reference by RS_Restore.

Xe RS_Restore
{1} Type: Frocedure/Function
(2} Purpose: Restores the parameters of the
communications port to the settings stored in data structure CommFort [
Com 1. lUsed after a child process is spawned tc recover communications
port operations.
{3) Description of Farameters:
Input: Com, the communications port to be
restored
Output: The selected port is restored.
(4) Subroutines Called:
DataCom.RS_Initialize
(3Y Process Description
Com and the parameters stored in ComPort [Com 1]
are us2s to call RS_Initialize.

Y RS_Eight_Bits
(1) Type: Procedure
(2) Purpose: To set the current communications port
to eight data bits for Xmodm transfers.
{Z) Description of Parameters:
Input: Current_Com (public)
Output: The communications port is set for eight
data bite.
{4) Subroutines Called:
System.Fort

89

(S) Process Description
The UART Line Control Register is ORed with $03,
setting the number of data bits to eight.

Z. RS_Cleanup
(1) Type: Procedure
(2) Purpose: Disables interrupts for the current
communications port at the Programmable Interrupt Controller.
(3) Description of Parameters:
Input: Current_Com (public)
Output: The FIC is reset for this interrupt.
(4) Subroutines Called:
System.Port
{S) Process Description
The interrupt mask bit for the current
communications port is set,

aa. HexByte
(1} Type: Function
(2) Purpose: Converts a byte into its hexadecimal
string equivalent for the Unit Exit procedure.
{3) Description of Farameters:
Input: E, the byte to be converted.
Dutput: A string of length two.
{4) Subroutines Called: None.
(%) Process Description
The byte is first shifted right four bits to
consider only the high order bits, and a character indexed #from the
hexadecimal sequence HexDigit. This is concatenated with the character
produced by indexing HexDigit by the low order four bits of B to form
the two digit hex equivalent.

ab. HexWord
(1) Type: Function
{2) Purpose: Converts a word into its hexadecimal

string equivalent for the Unit Exit procedure.
(3} Description of Farameters:
Input: I, the word tc be converted.
Output: A string of length four.
(4) Subroutines Called:
DataCom.HexByte.
System.Hi
System.Lo
(S Process Description
HexByte is called with both the high and low order
bytes of the word, and the resulting function results concatenated to
produce a four digit hex equivalent.

ac. DataComm_Error
(1) Type: Frocedure

Q0

(2) Purpose: Provides a robust means of handling
program faults while still insuring that interrupts are restored.
(3) Description of Parameters:

Input: System variables ExitCode, a word that
gives an indicaton of why program termination occured; and ErrorAddr, a
pointer containing a runtime error address if nonzero;

Output: The procedure writes any error messages
desired to the display and resets any interrupt vectors to their state
before program execution.

(4) Subroutines Called:

Dos.SetIntVec

System.Assign

System.Rewrite

DataCom.Hex

{(S) Process Description

This procedure is chained in to the normal exit
processing that the compiler installs for the unit and the unit
initialization code. It must be compiled using the Far Call model to
be accessible by the program runtime library. The procedure first
checks ExitCode and ErrorAddr for abmormal program termination and sets
Output to the standard file output for display to allow error message
display. The procedure then reports a USER BREAK or runtime error and
address 14 applicable. The program then insures any interrupt vectors
are restored and the communications ports are shut down. The
Frogrammable Interrupt Controller Interrupt Mask Register is restored
from a saved location. Finally, the original exit code for this unit
is rectored from & saved location for use by the runtime system
(TurboFascal Owner ' Handbook, pp. 369-270).

ad. DataCom Unit Initialization Code
{1 Type: FProcedure
(2) Purpose: Initializes the Unit, stores critical
vectors and registers for restoration on program termination.
(Z) Description of Farameters:

Input: System variables ExitFroc, a pointer that
gives the addrecss of the DataCom unit ezit procedure in the runtime
library,

Dutput: The procedure DataComm_Error is linked in
before the runtime exit procedure to accomplish an orderly termination
of the unit,

(4) Subroutines Called:
Dos.GetIntVec
System.Fort

{3) Process Description

The procedure first sets CRT.CheckBreak to TRUE to
allow user termination of the program. A pointer to the runtime exit
grocedure is saved, as well as the current settings for the
Frogrammable Interrupt Controller Interrupt Mask Register tor
restoration on exit, GetlntVec is used to save the current interrupt
vectore for communications ports one and two for restoration on exit.
The commurications port buffers are cleared, and the unit supplied exit

91

procedure DataComm_Error is linked in to the runtime system
(TurboPascal Owner’ Handbook, pp. 369-370). Finally, the two
communications ports are assigned default parameters, although not
initialized at this time.

APPENDIX F

MAINTENANCE MANUAL FOR UNIT DIRECTOR

A. UNIT DIRECTOR

1. Configuration Information

a. Language - Turbo Pascal Version 4.0

b. Compiler Version - 4.0

C. Target Hardware - IBM PC/AT or close compatible

d. Operating System — Microsoft MS-DOS (Version 3.x)

e. Program Description

Director is a set of functions and procedures that

allow the output MS DOS file directories to a windowed environment.
Masking options and a selector for normal or abbreviated (similar to
the MS-DOS /w switch) displays are allowed.

2. Subroutines Contained

a. StandBy
(1) Type: Procedure
{2) Purpose: Used internally by ShowDir, this

procedure displays an operator prompt to pause long listings. The
procedure exits when a key is pressed.
(3) Description of Parameters:
Input: Operator input from System.Readkey
ODutput: Frompt information to the window supplied
by the calling program,
{4) Subroutines Called:
CRT.GoToXY
CRT.HighVideo
CRT.WhereX
CRT.WhereY
System.Readkey
(3} Process Description
The procedure notes the position of the cursor,
writes a prompt to the operator, and waits until the operator presses a
key. The procedure then blanks the prompt, and exits.

b. View_Dir

(1) Type: Frocedure

{2) FPurpose: Frovides the selective display of a
directory, with the filenames and subdirectories displayed in summary
form (no date, size or attribute data).

(3) Description of Farameters:

Input: MatchFtrn, which specifies the path and

wildcerd options; FromLine and ToLine, which specify the window si:ze.

Output: To the window supplied by the calling
pragram.
{4) Subroutines {alled:
CRT.GoToXY
CRT.HighVideo
CRT.Lawvidec
DOS.FindFirst
DOS.FindNext
{S) Process Description
The procedure positions the cursor at column one
of the line specified in FirstlLine, then utilizes the procedure
FindFirst to find any file or directory matching MatchPtrn. This sets
up the DOS wunit for subsequent searches. The first entry found is
displayed and then FindNext is used for subsequent entries until the
directory 1is exhausted. Subdirectories are displayed in highlighted
video for ease of recognition in this summary display.

C. WriteEntry
(1) Type: Procedure
¢2) Furpose: Displays the complete file or directory
informaticrn of attributes, size, date and time for procedure ShowDir.
(2} Description of Farameters:

Input: DirInfo, & DDS Unit structure that
containe packed information about the most recently found directory
entry; line, the window line to display the information on. QOutput:

Te the window supplied by the calling program.
(4} Subroutines Called:
GetAttribut
CRT.GoTeXY
CRT.HighVideo
CRT.Lowvider
DOS.FindFirst
POS.FindNext
LOS. UnFackTime
() Process Description
The procedure calls library procedures in the DOS
unit to unpack the time entry in Dirlnfo. GetAttribut maps the
attribute order to a string repre.entation. The name, "<DIR:"
designation or file <cize, creation date and time, and the attribute
string are then written on the display at Line in MS-DOS format.

d. GetAttirbut
(1) Type: Procedure
(Z) Purpose: Map an MS-DOS attribute number to a text

string.
(3) Description of Farameters:
Input: attr, the ordinal MS-DDS attribute
combination.
Output: attribut, a string to return the text

string representatior of the attribute.
(4) Subroutines Called:
Syestem.Str

94

(3) Process Description
The attr variable is used as a selector in a case
construct to load attribut with the proper string. If the variable
does not map, the hexadecimal number in the variable attr is converted
to a string for dieplay.

e. Show_Dir
(1) Type: Procedure
2) Furpose: Provides the selective display of a
directory, with the filenames and subdirectories displayed in summary
form (no date, size or attribute data).
(Z) Description of Parameters:

Input: MatchPtrn, which specifies the path and
wildcard options; FromLine and TolLine, which specify the window size;
error, which reports DOSerror back to the calling program.

Qutput: To the window supplied by the calling
program,

(4) Subroutines Called:

CRT.CIlreQdL

CRT.ClrScr

CRT.GoTocXY

CRT.HighVideo

CRT.Lovideo

Director.wWriteEntry

DDS.FindFirst

DOS.FindNext

System. INC

(5} Frocess Description

The procedure utilizes the procedure FindFirst to
find any fiie or directory matching MatchFtrn. This sets up the DOS
unit for subsequent searches. Depending on the state of DOS.DOSError,
which indicates error conditions on the attempt to find a directory
entry, the entry is either displayed via WriteEntry or an error or
status mescsage 1s displayed and the procedure exits., The first entry
found 1is displayed and then FindNext is used for subsequent entries
until the directory is evhausted. For directories that exceed the
window <cize specified by FromLine and TolLine, the display is paused by
a call to the procedure StandBy and the operator is allowed to press a
key to continue.

APPENDIX G

MAINTENANCE MANUAL FOR UNIT ERRORCOD

A. UNIT ERRORCOD

1. Configuration Informsation

a. Language - Turbo Pascal Version 4.0

b. Compiler Version - 4.0

€. Target Hardware - IBM PC/AT or close compatible

d. Operating System ~ Microsoft MS-DOS (Version 3.x)

e. Program Description

ErrorCod 13 a array of string constants mappecd by the

DOS Error Code, Error Class, Recommended Error Action and Error Locus
indices found in (Microsoft, 1986, pp. 3-1 - 3.11, 4.254 - 4.255). The
unit is used by the units Parser, Spawn and the program Distrib to
report errors. A procedure is also provided to retrieve extended error

code information available in MS5-DOS versions 3.0 and above by DOS
function call #59.

2. Subroutines Contained

a. Extended_Error_Code
{1) Type: Frocedure
(2) FPurpose: To return the extended error code, class

and locus 1nformation available in MS DOS version 3.0 and later, in
recponse to & DOSERRCR result.
(Z) Description of Farameters: Extended_Error_Code

returnz the Error Code, Error Class and Error Locus in the respective
variables.
(4) Subroutines Called:
DOS. Intr (£21)
(8) Process Description
Thie procedure calls DOS function §59 with
register EX = U to get extended error information from MS DOS following
an gperating system error flag, as indicated by the Turbo Fascal
variable DOSERROR > 0O,

1)

APPENDIX H

MAINTENANCE MANUAL FOR UNIT GENERAL

A. UNIT GENERAL

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
C. Target Hardware - IBM PC/AT or close cospatible
d. Operating System - Microsoft MS5-DOS (Version 3.x)
e. Program Description
General 1is a collection of general purpose routines
that support the Wndow Unit and other modules.

2. Subroutines Contained

a. FillWord
(1) Type: Procedure
(2) Purpose: Given a variable, V, the procedure fills
Num words in the variable with integer Value.
{3) Description of Farameters:
Input: Variable V: Num, the number of words to be
filled; and Value, the fill value.
Output: V is returned after filling.
{4 Subroutires Called:
Inline assembly
(&) Procese Description
Register DI is initialized with the starting
cffset of the variable V, CX contains the number of words to be filled,
and AX contains the Value to be used to fill. The STOSW instruction
autoincrements the ['l register after each store and decrements CX. The
loop ends when CX = 0, Using assembly language string processing
instructions, the procedure uses the DI index register to point to the
memory iterates a store operation with the 16 bit word Value beginning
at the first location in V and continuing for Num iterations,
incrementing the storage location by a 16 bit word each time.

b. Exchange
(1Y Type: Procedure
t2) Furpose: Exchange the contents of two variables
without compatibility checking.
(2} Description of Farameters:
Input: S, D are the variables to be exhanged, and
L is the number bytes to be exchanged.

Output: The variables S and D are returned after
the exchange.
(4) Subroutines Called:
Inline assembly
(S) Process Description
Register Dl is loaded with the offset of variable
S, register 8l with that of D. CX receives L. The value at variable
D, indexed by DI, is loaded into AX and exchanged with the value at
variable §, indexed by SI. STOSE autoincrements both index registers
and decrements CX., The loop stops as CX reaches 0,

c. Beep
(1) Type: Frocedure
Purpose: Produce a speaker tone for 1/4 second.
Description of Parameters:
Input: Freq, the desired tone frequency.
Output: A speaker tone.
(4) Subroutines Called:
CRT.Del ay
CRT.Sound
CRT.NoSound
(S Process Description
CRT procedures NoSound and Sound operate in
tandem. First the speaker is silenced. Then, the Sound procedure 1in
the CRT Unit ic called with parameter Freq and & delay of 1/4 second is
allowed before turning the speaker off again.

d. Max
‘1 Type: Function
{2 Purpose: Returns the larger of two integers.
Typically used with Open_Window to insure the window is large enough to
held a menu displavy.
Z) Description of Parameters:
Input: X, Y, the integers to be compared.
Output: The larger integer of the 1input

{

parameters,
(4) Subroutines Called: None.
{53) Frocess Description
The +two 1integers are compared and the function
result eguated to the larger,

e. Min
1) Type: Function
(2 FPurpose: Returns the smaller of two integers.
Typically used with Open_Window to insure the window 1s large enough to
hold a menu display.,
t2) Description of FParameters:
Input: X, Y, the integers to be compared.
Dutput: The smaller integer of the input
parameters.
(4) Subroutines Called: None.

98

(5) Process Description
The two integers are compared and the function
result equated to the smaller.

f. Cursor_Size
(1) Type: Function
(2) Purpose: Sets the cursor displayed as either an
underline or a block.
(3) Description of Parameters:

Input: Cursor_Type an enumerated type consisting
of line, block or invisible. Mono is TRUE if the display is
monochrome, FALSE if color.

Qutput: The video card is updated to display the
selected cursor.

{4) Subroutines Called:
DOS. Intr ($10) (video service)
{(S) Process Description

Register AX is set to #10 to call the ERIOS video
service, and the CX register is set to the proper value for the cursor
requested prior to the call.

g, Bet_Time
{1) Type: Function
(2) Purpose: Returns a string with the current time.
(Z) Description of Parameters:
Input: Nothing.
Output: A string with the current time in format
HH:MM:S5 =M.
(4) Subroutines Called:
DOS. Intr ($21) (DOS service)
System.Str
{3) FProcess Description
Register AH is set to $2C to call the DOS time
service, and the CH, CL, DH and DL return the ordinal number for hours,
minutes, seconds and hundreths of seconds (Norton, 1985, p. 287). The
Turbo Fascal Str procedure ie used to convert each number intc a string
representation. The strings are then concatenated with formatting
characters and AM or PM notations.

99

APPENDIX I
MAINTENANCE MANUAL FOR UNIT MISCPACK
A. UNIT Miscpack

1. Configuration Information
a. Language — Turbo Pascal Version 4.0
b. Compiler Version ~ 4.0
c. Target Hardware -~ IBM PC/AT or close compatible
d. Dperating System - Microsoft M5-DOS (Version 3.x)
e. Program Description
Miscpack is a collection of data types and utility
routines supporting these other units: Xmodm, Parser, Spawn, Redirect,
and the main program Distrib. The strong typing features of Turbo
Fascal require that instances data types in different units that must
be equated be declared in one place to be compatible at compile time.

2. Subroutines Contained

a. BumpStrup
(1) Type: Procedure
{2) Purpose: To convert any string to upper case
characters.
(3) Description of Parameters: S is the formal
variable for a string of any length, since length checking is relaxed.
(4) Subroutines Called:
System.UpCase
System.Length
{S) PFrocess Description
Thie procedure returns the string as & call by
reference parameter after converting all of the characters making up
the string toc uppercase.

100

APPENDIX J

MAINTENANCE MANUAL FOR UNIT PARSER

fAA. UNIT PARSER

1. Configuration Information
a. Language -~ Turbao Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System — Microsoft MS-DOS (Version 3.x)
e. Program Description
The central procedure in this unit is Parser_Main,
which attempts to parse and execute an MS-DOS style command on the
local machine. The remaining procedures and functions support this
function.

2. Subroutines Contained

a. argc
(1) Type: Function
(2) Purpose: Returns the number of arguments in the
command line parsed by the procedure Farse. Farse must be called
before this function is valid.
(Z) Description of Farameters:
Input: None.
Dutput: The number of arguments in the command
line last parsed.
(4) Subroutines Called:
(S) Process Description
argc is set to the variable arg_count, which is
loaded by Parse.

b. argv()
{1} Type: Function
(2) Purpose: Return the arg_count ‘th argument

encountered on the last command line parsed by procedure Parse. Parse
must be called before this function is valid.
(Z) Description of Parameters:

Input: arg_count, the index of the argument
desired, arg_array, the index to the arguments indexed, and arg_string,
a copy of the command.

Dutput: A string, up to 128 characters long,
containing the arg_count’'th argument.

(4) Subroutines Called: None.

101

(S5) Process Description

Following a call to procedure Parse, the data
structure arg_array is loaded with the relative index of the start of
each argument in the command 1line parsed, and the length of that
argument. A length of zero at that index indicates no argument was
found. To construct the arg_count’'th argument, the command saved in
arg_string is copied starting at the index saved in the index field in
the arg_count’'th record of array arg_array, for the length field in the
same record. ‘

c. Init_Parse
(1) Type: Procedure
(2) Purpose: To parse the 1input string for
Parser_Main, and initialize the component strings for later use.
(3) Description of Parameters:
Input: Command_s, an input parameter for
Parse_Main.
Output: Pathspec is set to argv(0), the remaining
drive, node, and name strings are parsed.
{4} Subroutines Called:
Parse.argv(0)
Farse,FarseName
(S) Process Description
This procedure is local to Farse_Main, and is used
any time the command string being parsed is first parsed, or after the
command has been modified.

d. Parse
(1) Type: Procedure
(2) Purpose: Set up the argv and arc functions for &
command line received.
(Z) Description of Farameters:
Input: Command, a string variable containing the
command to be parsed.
Output: arg_array and arg_count are private
variables visible inside this unit.
(4) Subroutines Called:
System. Inc
System.Length '
(S) Process Description
First, a copy of the command is retained outside
this procedure in arg_string for later use by argv. Arg_array is then
initialized to clear olog parsing actions, and arg_count is initialized
to zero to act as an index for arg_array. The cycle begins by skipping
leading whitespace in the command. When the first non whitespace
character is encountered, the index of the string is noted in the
arg_count 'th record of arg_array and non whitespace characters are
skipped while incrementing the length field to determine the length of
the argument. Upon reaching whitespace again. the next record in
arg_array ic selected and the cycle repeats until the end of the string

102

is reached. arg_array, arg_count and arg_string are retained in
variables private to the unit for future ust.

e. ParseName
(1) Type: Procedure
(2) Purpose: Break a complete filename with path and
drive into its component parts.
{Z) Description of Parameters:
Input: inName is a composite drive, path and
filename string.
Output: The component file name, extension, name
and extension, path, drive and node (if any) in inName.
(4) Subroutines Called:
System.Copy
System.Delete
System.Length
? (S) Process Description
. The syntax for inName is:
[Node:: 1[Drive: J[\]Jdirectoryl\directory\lfilespecl[/Switchl, similar to
the MS-DOS command line csyntax with the exception of the node
designator, W®hich was intended for use with commands intercepted by a
background process. The procedure scans the command line backwards,
looking for the delimiters established in the constants Path_or_drive
and Hode_or_drive. When such delimiters are found, the suceeding
substring is copied intoc the appropriate output variable and the
command is truncated to continue the scan until the first character is
reached. The filename, if any, is then broken down similarly into its
component name and extension (Swan, pp. 26 - 27).

f. Resol ve_Command

(1} Type: Function

{2) Furpose: This procedure 1is passes the first
argument in a command line and attempts to create a complete path
spacification and match the filename to & command normally handled
internally by the DOS command processor or to an executable file in the
specified directory. Relative directory citations are adjusted to a
path +from the root directory. Parser_Main sets up the component parts
cf the +first argument via Farse_Name and places them in the variables
immediately above this function.

(%) Description of Farameters:

Input: Argurement, the first parameter in the
command line from Parser_Main.
Output: Arqument, corrected to a complete path

specification and filename extension. The function returns the type of
file detected (batch file, com +file, executable +file, directory,
pathstring or other file) as an enumerated type.
(4) Subroutines Called:
System.GetDir
DOS.FindFirst
DOS.FindNext

10Z

(5) Process Description

Resolve_command +first determines the current
directory with GetDir, and adjusts any relative directory path
specification found in argument to a full path specification complete
with drive and root directory, if needed. This is needed by the Exec
function called by Parser_Main. If no file extension was parsed by
Farse_Name, Resolve_Command attempts to find an executable file in the
directory cited by the now complete path specification by finding a
file with the same name and an "COM", "EXE", or “BAT" extension. They
are searched for in reverse priority so that the Exec call will attempt
to execute the filename with the highest rank, as Command.Com does
(Mefford, 1988, p. 334) and the +file type is identified. If the
command did cite a filename with extension, the file type is
identified. The file type is returned by the function for Parser_Main.
If an executable file was not found, a check is made to see if a
directory by that name exists, otherwise a general pathname ¢type is
returned.

g. Parser_Main
(1) Type: Procedure
{2) Purpose: This procedure parses a command received
by the Slave and attempts to execute it.
(3} Descriptior of FParameters:
Input: Command_s, the received command string.
Qutput: Response and Error_Msg are strings
containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and Error_Msg contain. Frompt 1s the
local machine current directory for return to the Master via the
calling program after the response is competed.
{4} Subroutines Called:
Farser.,InitParse
Farser.Match_Command
Farser.Resolve_Command
Farser.Parse
Farser.,FarseName
Farser.,argc
Farser.argv()
Spawn, Match_Command
Spawn.fFrocess_intrinsic_command
Spawn.Run_local
System.Length
{(5) Process Description
On entry, cammand_s contains the complete command

to be executed. lts component arguments are isolated by Init_ ‘arse,
and then a special case is checked to see if a simple drive change is
requested (e.g., "C:"). If sc, the internal DDS command "CD" is

prefi 2d to the command and it is re-parsed. The filename in the first
argument ie checked by Spawn.Match_Command against a set of commands
that this program handles irternally. This is a subset of the MS-DOS
interncl commands: Change Directory, Copy, Delete, Directory, Erase,

104

Make Directory, Remove Directory, Rename and their abbreviated forms.
1f matched, the command is passed to Spawn.Process_Intrinisic_Command
for execution and collection of responses. 1f not, the file type
returned by Resolve_Command is used as a case selector to either run an
executable file via Spawn.Run_Local, or a syntax error indication is
returned to the calling program. If executable, the command (program

name) is separated from the following command tail and passed to
Run_Local.

105

APPENDIX K

MAINTENANCE MANUAL FOR UNIT REDIRECT

A. UNIT REDIRECT

1. Configuration Inforsation
a. Language - Turbo Pascal Version 4.0
b. Compiler Version -~ 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description
Redirect is a set of functions and procedures that
allow the output of programs spawned under the Slave computer’s copy of
the main program Distrib to be redirected to files. Once the program
ends, the Slave computer can then forward the output normally displayed
on the screen to the Master computer for display.

2. Subroutines Contained

a. Init_Redirect_Unit
{1} Type: Procedire
(2) PFurpose: To reverse the Turbo Fascal
initialization of the Pascal standard files Input and Output to the CRT
trnit in preparation for redirection.
(3) Description of Farameters: None. This procedure
reassigns the Pascal standard files Input and Output.
{4) Subroutines Called:
System.Assign
System.Reset
System.Rewrite
(5! Frocess Description
The Turbo Pascal Version 4.0 reference manual
indicates that the initialization code found in standard Unit CRT
assigns the FPascal standard test files Input and Output to the CRT
Unit. In order to accomplish 1/0 redirection, these files must be
rereferenced to the standard input and output. The above subroutines
accomplish this.

b. Duplicate_Handle

(1) Type: Function

(2) Purpose: Returns a second handle that refers to
the same file (aor device) as the variable Handle. Used to save the
reference to standard 1/0 for later restoration after redirection ends.

(Z) Description of Parameters: Handle is the file
handle to be duplicated. ErrorNum is a variable for an MS-DOS error
code returned in the AX register if the MS-DOS function call fails.

106

(4) ‘Subroutines Called:
DOS. Intr ($21)
(S) Process Description
The DOS.Intr ($21) call is to the Duplicate_Handle
function, #45. The function returns another handle of type word.

c. Close_File_Handle
{1) Type: Function
(Z) Purpose: Closes a file handle that refers to a
file or device. Used to terminate 1/0 to the standard input or output
handle when redirected, and to dispose of the redirection handle.
ErrorNum is a variable for an MS-DOS error code returned in the AX
register if the MS-DOS function call fails.
{3) Description of Parameters: Handle 1is the file
handle to be closed.
t4) Subroutines Called:
DOS. Intr (£21)
(%) FProcess Description
The DOS.Intr($21) call is to the Close_Handle
function, $2E. ErrorNum is returned with an MS-DOS error code if the
call fails, as i1ndicated by a FALSE function result.

d. Redirect_Handle
(1) Type: Procedure

(2) Furpose: Forces a handle used by the system for
standard input or output to be redirected to the same file or device as
zrnother handle. The +ile or device originally pointed to may then

closed. 1/0 to the stancard input or output handle now appears at the
came file or device as the handle redirected to.

(Z) Description of Parameters: Handle 1is the file
handle pointig to the file or device to be redirected to, Red_Handle is
the standard 1/0 handle to be redirected.

(4y Subroutines Called:

DOS. Intr ($21)
{5) FProcess Description
The DOCS.Intr($21) call is to the FDup_Handle
functiaon, ¥4¢. ErrorNum is returned with an MS-DOS error code if the
call fails. On return the redirectecd standard I/0 handle now operates
through the file or device of Handle.

e. Redirect_Std_Output

(1) Type: Function

(2) Furpose: Redirects Standard Output tc a file of
our choosing.

(Z) Description of Farameters: S5tdOut is the M5-D0OS
standard output file handle to be redirected. Std_Output_File_Temp 1is
the file that aoutput will be redirected to.

(4) Subroutines Called:

Redirect.Duplicate_Handle
Fedirect.Redirect_Handle

107

(S) Process Description
The temporary output file 1is opened, a handle
pointing to StdOut is saved and then StdOut is forced to point to our
output file.

f. Restore_Std_Output

(1) Type: Function

(2) Purpose’ Restores the saved standard Output teo
its previous state, sets a variable Response_file to the name of the
file holding the redirected output to end redirection.

(3) Description of Parameters: StdOut is the MS-DOS
standard output file handle that was redirected. Std_Output_File_Temp
is the file that output was redirected to. Saved_Std_Out is the handle
that points to the original standard Output.

(4) Subroutines Called:

Redirect.Close_File_Handle
Redirect.Redirect_Handle
{3) Frocess Description
StdOut, the +file handle for standard ocutput is
reset to point to Saved_Std_Out, the temporary file Std_Output_File is
closed for writing, and the variable Response_File is set to the name
of the temporary file if no errors are encountered, otherwise NIL,.

g. Redirect_Std_Input

(1) Type: Function

{(2) Purpose: FRedirects standard Input to be drawn
from & file of our choosing.

{(3) Description of Farameters: Stdln is the MS-D0OS
standard input file handle to be redirected. Std_Input File Temp is
the file thast input will be redirected from.

{4) Subroutines Called:

Redirect.Duplicate_Handle
Redirect.Redirect_Handle
(S) Process Description
The temporary input file is opened for reading, a
copy of the handle pointing to Stdln is saved and then StdIn is forced
to point to our input file.

h. Restore_Std_Input

(1) Type: Function

(2) Purpose: Restores the saved standard Input to its
previous handle, and closes the input file to end redirection.

(3) Description of Parameters: Stdin is the MS-DOS
standard input file handle that was redirected. Std_Input_File_Temp is
the file that 1input was redirected from. Saved_Std_In is the handle
that points to the original standard Input.

(4) Subroutines Called:

Redirect.Close_File_Handle
Redirect.Redirect_Handle

108

(S) Process Description
Stdin, the file handle for standard input is reset
to point to Saved_Std_In, the temporary file Std_Input_File is closed
for reading. The function returns TRUE if no file errors are detected.

i. Redirect_Std_Error

(1) Type: Function

(2) Purpose: Redirects standard Error to be sent to a
file of our chaosing.

(Z) Description of Parameters: StdErr is the M5-D0S
standard error +file handle to be redirected. 5Std_Error_File_Temp is
the file that error will be redirected to.

{(4) Subroutines Called:

Redirect.Duplicate_Handle
Redirect.Redirect_Handle
{(3) Process Description
The temporary error file is opened for writing, a
copy of the handle pointing to StdErr is saved and thern StdErr 1s
forced to point to our error file.

J. Restore_Std_Error
(1) Type: Function
{2} FPurpose: Restorecs the saved standard Error to its
previous handle, and closes the error file to end redirection.
{Z) Description of Farameters: OStdErr ice the MS-DOS
standsrd error file handle that was redirected. Std_Error_File_Temp 15
the f1le that Error wes redirectec ts. Saved_Std_Error ics the handle
that pointz to the original standard Error.
{4} Subreoutines Called:
Redirect.Close_File_Handie
Redirect.Redirect_Handle
(S Frocess Descripticn
StdErr, the +file handle for standard error is
reset teo point tc Saved_Std_Error, the temporary file Std_Error_File ie
ziceed {fo- reading. The function returns TRUE if no file errors are
detected.

k. Redirect_All_QOutput

1Y Type: Function

{2) Purpose: Redirects both standard error and
standard output to a file of our cheoosing.

(Z) Description of Farameters: StdOut is the MS-DOS
standard output file handle to be redirected. Std_Output_File_Temp is
the file that output will be redirected to. Stderr is the MS5-DOS
standard errort file handle to be redirected. Std_Error_File_Temp is
the file that output will be redirected to.

(4) Subroutines Called:

Redirect.Duplicate_Handle
Recirect.Redirect_Handle
(5! Frocess Descript:on
The temporary output file is opened, & handle
pointing to Stalut is saved and then StdOut is forced to point to our

109

output file. The proﬁess is repeated for StdErr, except that it is
redirected to the same output file.

1. Restore_All_0Output

(1) Type: Function

(2} FPurpose: Restores the saved standard output and
erraor +to their previous states, sets a variable Response_File to the
name of the file holding the redirected output to end redirection.

(3) Description of Farameters: StdOut is the MS-D0S
standard output file handle that was redirected. Std_Output_File_Temp
is the file that output was redirected to. Saved_Std_Out is the handle
that points to the original standard Qutput. StdeErr is the MS-DOS
standard output file handle that was redirected. Std_Error_File_Temp
is the file that output was redirected to. Saved_Std_Err is the handle
that points to the original standard Error.

(4 Subroutines Called:

Redirect.Close_File_Handle

Redirect.Redirect_Handle

{5y FProcese Description

StdOut, the file handle for standard output is
reset to point to Saved_Std_0Out, the temporary file Std_Dutput File is
closed for writing. ©StdErr, the file handle +for standard error is
reset to point to Saved_Std_Err, the temporary file Std_Error_File is
closed for writing, and the variable Respor-e_File is set to the name
of the temporary file if no errors are encountered, otherwise NIL.

. Restore_CRT_Assignments

(1 Type: Frocedure

12 Furpose: To set the standard Input and Output
files *o textdrivers in the CRT Unit. Faster inoput and output 1s
obtainec.

{3} Description of Farameters: None. This procedure
reassigns the Fascal standard files Input and Output to CRT.AssignCRT ¢
Irput) and CRT.As=ignCRT (Output).

{4) Subroutines Called:

Cystem.AssignCRT
System.Reset
Syztem.Rewrite
(%7 Process Description
The assignments restore the input and output
standard files to the CRT unit.

110

APPENDIX L

MAINTENANCE MANUAL FOR UNIT SPANWN

A. UNIT SPARN

1. Configuration Information
a. tanguage - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description
This unit detects commands that should be processed
internally by the Distrib program, and executes commands internally or
by spawning & child process. Command output and error responses are
returned to the caller either as strings suitable for conversion to
Xmodm buffers, or by reference to files containing the text. This unit
also contains the redirection switch as a public variable that dictates
whether program output will be redirected tc a file or displayed
locally on the screen. This switch is normally set to redirect to
file.

2. Subroutines Contained

a. Match_Command
(1) Type: Function
(2} Purpose: To search a command string for a substring
that matches a command to be processed internally by the Slave program.
{3} Description of Farameters:
Input: Filespec is a command stripped of path
specification, or leading or trailing spaces.
= Dutput: The function returns TRUE if a match was
fourd, &lomg with anm enumerated type matching the command, FALSE
otherwise.
{4) Subroutines Called:
System.Length
System.Fcs
N Frocess Description
A substring search is conducted using the enumerated
internal command type to index an array of strings containing the
command namec. The internal command must be matched by exact
replication and must be positioned as the first substring in FileSpec.

b. Process_Intrinsic_Command
(1} Type: Frocedure

(2) Purpose: This procedure executes an internal
command detected by Match_Command. This procedure, and Run_local,
execute commands for Spawn.Parser_Main.

(3) Description of Parameters:

Input: Command, the enumerated type specifying the
internal command. Command_tail are the parameters for the internal
command.

Output: Response and Error_HMsq are strings
cantaining either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and Error_Msg contain. Prompt is the
local machine current directory for return to the Master via the
calling program after the response is competed.

(4) Subroutines Called:

System.ChDir

System.GetDir

System.Mkdir

System.RmDir

(S) Process Description

The Command parameter is used in a CASE construct
select commands that are completed by Turbo Fascal functions and
procedures, and to pass other internal commands to Run_local to spawn &
copy of the MS-DOS command processor and run the command. This
approach 1s taken to greatly simplify the command parsing and
esecution, since these requirements can be offloaded to the spawned
command processor for commands with comple: processing requirements
such as DIR., Batch_mode is set to signal Run_Local to spawn a copy of
the command processor rather than attempting to execute the command as
a program,

c. Run_tacal
(1) Type: Frocedure
(2} Purpose: This procedure executes all command that
nd detected by Match_Command. This procedure, and
Frocess_Intrisic_Command, execute commands for Spawn.Parser_Mairn.

(3) Description of Parameters:

Input: Frogram_name, the name of the command or
file to be executed; Command_line, the arguments for the command or
file; and Batch, which signals that a copy of the MS-DOS command
processor is to be used to run the program far batch files and certain
inrternal MS-DOS commands.

Butput: Response and Error_Msg are strings
containing either the command output and error messages, respectively,
or filenames coritaining the information. Restype and Errtype tell the
calling program what Response and Error_Msg contain. Prompt is the
local machine current directory for return to the Master via the
calling program after the response is competed.

(4} Subroutines Called:
Fedirection.Init_Redirection_Unit
Redirection.Redirect_All_Output
Redirection.Reztore_All_Output

112

Redirection.Restore_CRT_Assignments

Support.Find_Environment

System.ChDir

System.GetDir

System.UpCase

System.Length

(3) Process Description

CRT.CheckBreak 1is set to allow an operator to
terminate execution of a runaway program. If the Batch flag is set,
the command is adjusted to execute a copy of COMMAND.COM and the
original command and arguments are moved to command tail.
Find_Environment is used to locate the explicit path specification and
file name for COMMAND.COM, as required by the Exec procedure. The
current directory is saved to return the program to its working
directory after command execution. If the Redirection flag has been
set, calls are made to the Redirection Unit to route all subsequent

program output toc +files visible in the Redirection Unit. Thie
redirection is inherited by any programe spawned from this program by
Exec (Breco, 1987, p. Z29). Exec is then called to spawn the

program{(z). On return, the standard output handles are restored and
the original working directory restored as a precaution.

APPENDIX M

MAINTENANCE MANUAL FOR UNIT SUPPORT

A. UNIT SUPPORT

1. Configuration Information
a. Language — Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware -~ IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description
The Support Unit contains most of the constant
declarations for the program, along with the initialization procedure
some general purpose proceagures. From (Edwards, 1987, pp. 241 - 272).

2. Subroutines Contained

a. Initialize
{1) Type: Procedure
{2) FPurpose: This procedure sets the default
parameters for the program, attempts to read the telephone number +file
and creates a file if none exists, reads the user developed
configuration file to override some defaults, displays the terminal
screen and initializes the Wndow Unit.
(3} Description of Parameters:
Input:
Output:
{4) Subroutinecs Called:
System.UpCase
System.Length
{2) FProcess Description
This procedure first attempts to open a
configuration file under the name found in the constant structure
Defaults., If this file exists, the current configuration is read in to
a similar structure called Current, otherwise all parameters are taken
from the constant structure. This is used to set the screen colors,
identify the initial communications port to use, and identify the modem
port. Thiz file may be updated from the Master screen. From the
configuration selected, the environmental parameters are established.
A similar process attempts to read the list of telephone numbers and
associated parameters, however the size of this array is not known in
advance. A memory block is drawn from the heap for each telephone
record read to make the list. If the file does not exist, a dummy
record is established. This file may also be updated from the screen.
Finally, the designated communications port is initialized. This is

114

.

essential if the Slave computer is to recognize external commands
without operator intervention.

b. Save_File
(1) Type: Procedure
(2} Purpose: To save user modified configuration or
telephone dialing list parameters in a local file for later use on
program initialization.
(3) Description of Parameters: D is a boolean switch
that selects the file to be saved.
(4) Subroutines Called:
Wndow.Open_Window
CRT.ClrScr
Support.Yes
Support.NoFile
Support.Ok
Wndow.Close_Window
(5) Process Description
This procedure saves the default environmental
parameters as modified by the user in the file DISTRIE.CFG; or the
current list of telephone numbers and communications port parameterc in
the file DISTRIB.PHN. Both files are loaded on program initialization
{if available) and override the default parameters found in the
constant data structures in the unit Support.

c. OK
(1) Type: Procedure
{2} Purpose: To obtain an acknowledgement +from the

user,
(3) Description of Farameters:
Input: &, the string to title the prompt window.
Output: The wuser has responded 1f the call
returns.

{4) Subroutines Called:
Wndow. Open_Window
Wndow. Frocess_Window
Wndow.Close_Window
{(2) Process Description
This function opens a window with a "0OK" display
and the query in the window title field. The operator then depresses
the ENTER key to acknowledge, which is detected by Process_Window. The
widow is closed and the procedure call returns.

d. Yes
(1) Type: Function
{2) Purpose: To prompt the user {for a vyes or no

response.
(%) Description of FParameters:
Input: &, the string to title the prompt window.
Output: The function returns true if Yes was
selected.

115

(4) Subroutines Called:
Wndow. Open_Window
Wndow.Processe_Window
Wndow.Close_Window
(%) Process Description
This function opens a window with menu bar,
displaying the query in the window title field and the selections “Yes"
or "NO" in the window. The operator selects with the menu bar, and
Process_Window returns a value of two if the selection was "Yes." The
widow is closed and the function returns true if "Yes" was selected.

e. NoFile
(1) Type: Procedure
(2) Purpose: To obtain an acknowledgement from the
user after failing to find a file,
(Z) Description of Parameters:
Input: 5, the string to title the prompt window.
Dutput: The wuser has responded if the call
returrs.
(4) Subroutines Called:
CRY.ClrScr
Support.OK
Wndow,Open_Window
Wndow,. Frocess_Window
Wndow.Close_Window
(G) Frocess Description
This function opens a window to inform the
operator that the desired file could not be found, then opens another
windaow with & "QK" display. The operator then depresses the ENTER key
to acknowledge, which is detected by the Ok procedure. The widow 1is
closed and the procedure call returns.

f. Build_Status_Line
{i} Type: Frocedure
{Z) Furpose: To construct a status line at the bottom
of the video display.
{Z) Decscription of Farameters:

Input: Nothing.

Output: A status line containing information on
the current communications port is displayed at the bottom of the
screen.

(4) Subroutines Called:

Svstem. Insert

Wrdow. Write_Status_Line

(3) Process Description

The procedure starts with a blank status line and
inserts substrings depending on the state of variables declared in this
unit to construct the status line. Write_Status_Line displays the line
in the appropriate position.

116

g. Check_keyboard
(1) Type: Function
2) Purpose: To return a keyboard character,
including special characters.
{3) Description of Parameters:
Input: The key 1is taken from the Readkey

function. Output: The function returns the character
read, or the keyboard scan code in the high byte if a special character
is read (Readkey returned a zero). I no key is available, the

function returns zero.
(4) Subroutines Called:
System.KeyPressed
System.Readkey
(5) Proceoss Description
The function checks the Keypressed function and if
true, calls Readkey to get the character. If Readkey returns zero, a
spezial key has been pressed, and the scan code is read from Readkey.
The character is returned, or the scan code in the high byte of the
integer if appplicable.

h. Check_Auxport
(1) Type: Function
(2) Furpose: This function checks for a character at
the currently selected communications port and returns a result.
(%} Description of Farameters:
Input: Nothing.
Output: NUL 1¥ pno character is ready, or the
character 1f one was read,.
(4) Subroutines Called:
DataCom.RS232_Avail
PataCom.RS232_In
{SY FProcess Description
RES2IZ_Avail returns true if a character 1is
available in the receive buffer of the currently selected
communizations port. If true, the character is read through RS2ZZ_In,
and passed toc the LST device and Ascii_file 1f public variables are
set, The character is returned, or NUL if no character was available.

i. Find_Environment
{1) Type: Function
2) Purpose: To return a specified string from the
operating system environment. This function typically 1is called to
fincd the COMSFEC=<path specification: string to locate a copy of the
MS-DOS command processor. With this path information, & second copy of
tte command processor can be spawned to run programs from this one.
(Z) Description of Farameters:
input: What is the parameter to be searched for.
The environment contains strings of the form What=<text>.
Output: 1+ found, the <text> part of the
environment strings; if not, a NUL string.

117

(4) Subroutines Called:

System.MemW

System.Ptr

System.Copy

System.Length

{S) Process Description

To run a batch file, a second copy of the MS-D0S
command processor is spawned as a child process, with the batch file as
a command tail. The secondary processor executes the batch file and
terminates. A copy of the command processor must first be located
without previous knowledge. MS-DOS normally places a string citing the
path to the COMMAND.COM on system initialization in an area of memory
called the environment, along with other information from the
AUTDEXEC.BAT file such as PATH information. A segment pointer to this
MS-DOS environment 1is placed in any program spawned from the original
command processorin the child Program Segment Prefix, at offset $002C.
The environment starts on a segment boundary, so the offsed is
automatically #0, This environment is the same one manipulated by the
SET command from MS-DOS, and normally contains a string of the form
COMSFEC=D:\directory\directory\command.com. To search the environment
for the requested string, a pointer (Environ) is typed for the maximum
cize of the environment, 32k bytes and initialized +From the segment
value at offset $002C. Each string in the environment is terminated by
a NUL character (ASCI1IZ). The environment area itself is terminated by

an extra NUL. The environment area is searched, string by string by
copying the strings into a local variable string, S. Each of these
strings is examined for the search string What. If found, the
remainder of the string is returned, otherwise a NUL string. This
functior is duplicated in Unit Support to prevent circular unit
dependencies. {(Edwards, 1987, p. 250).

J. Update_Status
(1) Type: Procedure
2) Furpose: To display or refresh the current status
of the calling program in a monitor window.
(3) Description of Farameters:

Input: Typically this procedure writes current
information contained in a data structure by writing formatted strings
tc an open window, and then displaying the contents of the data as a
string, or by mapping an enumerated data type to an array of constant
strings to display the value.

Output: A window display of the :urrent status.

(4) Subroutines Called:

Wndow. Get_Window

CRT.C1rEOL

CRT.GoToXY

{3) Process Description

This procedure is local to Modify_Entry. The
process depends on the caller to open a properly sized window and to
set & variable called Status_ID to allow the status window to be
accessed via Get_Window. Once reopened, the procedure writes the

118

current status information.The procedure then resets the working window
to that of the caller’'s Monitor_ID.

k. Modify_Entry
(1) Type: Procedure
(2) Purpose: to display the current list of telephone
numbers that may be dialed automatically, or the current program
configuration parameters.
(3) Description of Farameters:

Input: I, a selector. If I > O the phone list is
to be modified, if I = 0 then the configuration parameters are
madified.

Dutput: The wuser is offered the opportunity to
save the modifications to a file.

(4) Subroutines Called:

Update_Status (local)

CRT.ClrScr

CRT.BoToXY

System.UpCase

System.Length

Wndaw. Open_Window

Wndow. Process_Window

Wndow.Close_Window

{S) Frocese Description

Depending on [, the procedure opens a window of
the correct size, and then displays the current parameters by mapping
their values through arrays of constant strings to display readable
values., The procedure then enters a loop +for operator entry of
parameters to be modified. The user then positions a menu bar over the
appropriate selection and presses ENTER. Depending on the selection,
the protedure prompts the operator for an input string, or displays
ancther parameterized window and calls Process_Window to obtain the
current selection., When ESC is pressed, the loop ends and the recorded
modifications may be safec to a configuration or phone list file by
Save_File. All windows are closed and the procedure returns.

119

APPENDIX N

MAINTENANCE MANUAL FOR UNIT WNDOW

A. UNIT WNDOW

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description
This unit provides all window creation, memory
allaocation, display, wmenu bar processing, closure and memory
deallocation functiens +for the program Distrib. The unit was changed
from an inciude file to a unit, but not otherwise changed from that
originaliy developed by the author in (Edwards, 1987, pp. S0-98). The
purpose descriptions are from the author.

2. Subroutines Contained

a. SetColor
(1) Type: Frocedure
(2} Purpose: Set the EGA foreground color for text
display.
{3) Description of Farameters:
Input: Color, the code to set the color to.
Output: All future text will be displayed in the
color selected.
{4) Subroutines Called:
CRT.TextColor
(5} Process Description
The color selected is stored 1in the variable
Foreground, and a «call is made to TextColor to set the screen
foreground color in accordance with the EGA monitor standards.

b. SetBackGround
(1¥ Type: Procedure
{2} Purpose: Set the EGA background color for text
display.
(3) Description of Parameters:
Input: Color, the code to set the color ta.
Output: All future text will be displayed on a
background of the color selected.
{4) Subroutines Called:
CRT.TextBackGround

120

(S) Process Description
The color selected is stored in the variable
Background, and a call is made to TextBackBround to set the screen
background color in accordance with the EGA monitor standards.

C. Get_Dummy_Screen
(1) Type: Procedure
(2) Purpose: Force the Screen variable to point to a
dummy area on the heap.
(3) Description of Parameters:
Input: Screen, Screen_New (Public variables in
this unit.
Dutput: Screen and Screen_New
{(4) Subroutines Called: None.
(3) Process Description
Screen 1s initialized to point to the the start of
the display area for the color or monochrome monitor in
Init_Window_Info. This procedure saves this pointer in Screen_New and
then fills Screen with the same information.

d. Get_Real _Screen
(1) Type: PFProcedure
21 Purpose: To undo the work of Get_Dummy_Screen
(32} Description of Farameters:
Input: Screen, 5Screen_New (Fublic variables in
thiz unit.
Qutput: Screen and Screen_New
(4) Subroutines Called: None.
(%) Frocess Description
Screen is initialized to point to the the start of
the display area for the color or monochrome monitor in
Init_Window_Info. Get_Dummy_Screen redirects the pointer Screen to a
dummy area on the heap. This procedure restores Screen to its original
setting.

e. Build_Borders
(1) Type: FProcedure
(2) Purpose: Build a border of single or double lines
around a window.
(Z) Description of Farameters:

Input: Lines, specifying & single or double
border. Active_Window, a public pointer in this uwnit to a window
control block containing information about the size and current
position of the window to be bordered.

QOutput: The output is a border written to the
display to outiine the window.

{4) Subroutines Called:

General,.FillWord

System.Length

(S

Process Description

This procedure determines the window limits

contained in the window control block pointed to by Active_Window, and
places standard symbols in screen memory to outline the window.

f. Open_

(1)
(2)
border around it.

Window
Type: Function

Purpose: Open a window on the screen and draw a

()]

Description of Parameters:

Input: X1, Yi, X2, Y2 are the window coordinates;

Flag is a bit mask of allowed functions for this window (borders, GOTO
allowed within the window, relocatable and can be closed from the main
program.* Name is the window title to be displayed.

Dutput: 0 - window opened successfully; 1 -

Invalid window coordinates; 2 - not enough memory (failure).

(4)

(5

Subroutines Called:

System.GetMem

System.MemAvail

System.Move

Wridow. Build_Rorders

Frocess Description

After checking the input parameters for valid

coordinates and sufficient memory, the memory required to save the
portion of the screen displayed by the window is allocated from the
heap and the window is drawn with the appropriate colore and borders.,
Active_Wirndow 13 advanced to this new window after adding it to the
linked list of open windows,

g. Close_Window

(1)

()
Active_Window.

()

Type: Function
Furpose: To close the window pointed to by

Decscription of Parameters:
Input: Active_Window is a public pointer managed

by this unit, anrd refers tc the
Output:

is redirected toc the previcus

windows. The function returns

currently open window.

The window is closed, and Active_Window
window in the 1linked 1list of open
FALSE if successful, TRUE if an attempt

was made to close a window with Active_Window™=NIL (no more windows

open).
(4)

(37

Subroutines Called:

Svstem.FreeMem

System.Move

Wndow. Build_Rorders

wWwndow. SetBackground

Wndow. SetColor

Frocess Description

After checking the input parameters for valid

coordinates and sufficient memory, the memory regquired to save the
portion of the screer displayed by the window is allocated from the

—
r
r3

heap and the window is drawn with the appropriate colors and borders.
Active_Window is advanced to this new window after adding it to the
linked list of open windows.

h. Save_Window
(1) Type: Function
2} Purpose: This function saves the image of the
current window, closes it, and returns a pointer to the saved window in
memory.
(3) Description of Parameters:
Input: Active_Window is a public pointer managed
by this unit, and refers to the currently open window.
Output: A pointer to the saved window,
(4) Subroutines Called:
Wndow. Open_Window
Wndow.Close_Window
{5) Process Description
W, & local wvariable 1is pointed to the same
window_block as the current Active_Window. The procedure then opens a
window with parameters identical to the current window by using the
local pointer W to dereference the current window parameters. The act
of opening a window of the same size and parameters has the effect of
saving the original window. Active_Window now points to the new
window, If the call to Open_Window fails, a NIL pointer 1is returned
from Save_Window and the function exits. Otherwise, parameterc from
the saved window are transferred to the Active_Window block, W is
rediracted to the newly updated current window, Active_Window is
retracted to the saved window and the window that overlaid it is
ciosed, The function returns the pointer to the saved block.

i. Restore_Window
(1) Type: Frocedure
2} Purpose:
{Z) Description of Farameters:
Input: A pointer to a saved window.
Output: TRUE if the function was unable to
restore the window.
{4) Subroutines Called:
Wncdow. Open_Window
Wndow. SetBackGround
Wndow. SetColor
Frocess Description
The function first uses the window pointer to set
the video display colors. Then, an attempt is made to open a window of
the same size as the saved window. If this fails, the function returns
true. Otherwise, the Active_Window parameters are set to the saved
window, the saved window is added toc the window control block chain,
ard Active_Window is reset to point to the restored window.

re
Lt

Je Get_Window
(1) Type: Function

—
)
(]

(2) Purpose: To bring a window to the top of the
screen.
(3) Description of Parameters:
Input: Whichy, the ID of the window to be
surfaced.

Qutput: False if the operation succeeds, True if
the ID did not exist.
(4) Subroutines Called:
Wndow. Get_Dummy_Screen
Wndow_Restore_Window
(3) Process Description
Get_Window follows the backlinks from
Active_Window back until the ID of Which is found or the links end at a
NIL., If found, Move_Window is used to copy the desired window into a
heap area obtained by Get_Dummy_Screen. The window is then placed on
the screen by Restore_Window.

k. Move_Window
(1) Type: Function
{2) Purpose: To move a current window by a relative X

and Y.
(3) Description of Farameters:
Input: X, Y the direction and amount to move the
window.
Output: False if the operation succeeds, True if

the coordinates are invalid.
(4) Subroutines Called:
CRT.Window
Wndow.Exchange
(3) Process Description
Move_Window checks the values of X and Y and then
copiez the window incrementally in the desirecd directionis). The built
ir procedure Window is then used to enable the new window location for
display.

1. Write_Status
{1) Type: FProcedure
(2) Purpose: To display a string on the 25th video
display line with a video attribute.
(Z) Description of Parameters:
Input: S, the status string; Attrib, the display
attribuie.
Output: The string is written to the display.
(4) Subroutines Called:
System.Length
(3) Process Description
The procedure first concatenates the attribute
byte with the display character and then writes the combination to the
ecreen as a word, using the Screen pointer.

124

;. Process_Window_Menu
(1) Type: Procedure
(2) Purpose: to display and process a menu in the
current window.
(%) Description of Parameters:
Input: Menu is a constant that must consist of an
integer, followed by an array of string constants of length Menu.
Output: The function returns & byte reflecting
the index of the i‘th string in the constant array. A zero is returned
if ESC is pressed.
{4) Subroutines Called:
Set_Highlights (local)
GoDown (local}
GoHome (local)
GoEnd (local?
GoUp (local)
CRT.BoToXY
CRT. TextRackground
CRT.TextColor
Support.Max
Support.Min
System.Length
Wndow. Build_Eorders
(5) Process Description
This function relies on a side effect of the data
structure, and assumes that the array of strings representing the
selections to be displayed in the window immediately follow Menu. By
abtaining a memory address for Menu, the function opens a window of the
proper size and then uses this implementation specific information to
dieplay the strings. The function then offers the operator the menu
ber movement options on the status lime to make a selection.

APPENDIX O

MAINTENANCE MANUAL FOR UNIT XMODM

A. UNIT XMODM

1. Configuration Inforsation
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
C. Target Hardware - IBM PC/AT or close compatible
d. Operating System -~ Microsoft MS-DOS (Version 3.x)
e. Program Description
Thie wuwnit handles all requests for Xmodem protocol
packet and file transmission and reception.

2. Subroutines Contained

a. String_to_Buf
{1) Type: Procedure
(2} FPurpose: Convert a string of length 128 to an
Xmodem buffer of the same length.
(3} Description of FParameters:
Input: S, a 128 character string.
Dutput: buf, an Xmodem buffer. Short strings are
padded with NUL characters.
(4) Subroutines Called:
System.Length
{5) Process Description
The string 1is treated as an array of characters,
and each is read into the same position in the buffer,

b. Buf_to_String
(1) Type: Function
(2) Furpose: Convert a 12B character buffer into a
string of the same length. Nonprinting characters are replaced with
Spaces.
(Z) Description of Farameters:
Input: buf, the 128 character buffer of
characters,
Output: s, a 128 character string.
(4) Subroutines Called: None.
{5) Process Description
The string is treated as an array of characters,
and each character in the buffer, another array of compatible type |is
read into the string. Spaces are substituted for nonprinting
characters,

126

c. ReadAux
{1 Type: Function
(2} Purpose: Returns a character from the currently
selected communications port, and also writes the character to the
monitor file and monitor window 1if selected. Provides a timeout
function and a keypressed abort,
(3) Description of Parameters:
Input: Seconds, the number of seconds to wait for
a character before returning with a timeout indication.
Output: A word with the received character in the
low order byte, value 256 (timeout) otherwise.
{4) Subroutines Called:

CRT.Delay

CRT.Keypressed

CRT.TextColor

CRT. BackGround

DataCom.R5232_Avail

System.DEC

(S) Frocess Description

A factor is multiplied by the number of seconds to
wait, and then used in a fast loop to test for a received character or
operator keypress. Either event breaks the loop. If a character is
available, the function returns the character,. 1 Monitor_1ID is
greater than zero, a monitor window 1is open and the character is
writtern to the cursor position there and tc a monitor file. Otherwise,
& timeout indicator is returned.

d. Writefux
{1) Type: Frocedure
(2! Purpose: Sende a character to the currently
selected communications port, anc also writes the character to the
monitor file and monitor window if selected.
(3} Description of Farameters:
Imput: Ck, the character to be sent.
Output: The character ic sent and displayed if
the Monitor_ID switch is greater than 0,
{4) Subroutines Called:
ERT.TextColor
CRT.BackGround
Datalom.RS232_Out
{3) Frocess Description
The character is sent out the communications port
by RS2IZ_0Out., I Monitor_ID is greater than zero, a monitor window is
open and the character is written to the cursor position there and to a
monitor file.

e. Send_String
(1) Type: FProcedure
(2} Purpose: To send & string out the currently
celected communications port.

127

—

(3) Description of Parameters:
Input: S, a string.
Output: The string is sent to the port.
(4) Subroutines Called:
DataCom.RS232_0Out
System.Length
(3) Process Description
The string is passed, character by character, tao
the communications port.

f. Receive_Record
(1) Type: Function
(2) FPurpose: Receive an Xmodem packet +from the
currently selected communications port. A building block for file and
command transfers.
(Z) Description of Parameters:

Input: Buf, the data portion of the packet;
Blocksize, the size of the data buffer; seconds, the number of seconds
to wait before timing out on reception; and expected_block, the ordinal
number of the next block expected from the sender.

Dutput: Buf is filled with the data packet
contents if successfully received; errors indicates the number of
errors encountered in receiving the packet.

{4) Subroutines Called:
Xmoadm. ReadAux
Xmodm. Writefux

{S) Process Description

Receive_Record first listens for the SDH character
signalling the start of an Xmodm packet from the port via ReadAu:,
passing the numbert of seconds to wait on the call. The function exits
immediately with an appropriate status code i a CAN, EOT or unexpected
character is received. IF SOH is received, the function then assembles
the Xmodem header, calculates a running checksum on the incoming data,
and detects the checksum character. It then checks the packet for
match between the block number and its inverse {(packet locations two
and three, respectively), an incorrect block number compared to the
input expected_block, and a different checksum from that received and
provides the appropriate status on return for each. If the packet was
received correctly, an ACK is sent to the transmitter, If not, a NAK
is sent.

g. Get_Buffer

(1} Type: Frocedure

{2 Purpose: Reads a buffer of size blocksize from a
previously opened file. FPads the buffer with NUL characters if smaller
than requested.

(Z) Description of Parameters:

Input: Buf, the buffer to fill; blocksize, the

size of the buffer in bytes; XferFile is a private file variable in
this unit.

128

Output: Buf contains the next file buffer.
(4) Subroutines Called:
System. Bl ockRead
{3) Process Description
The low level file read procedure BlockRead is
used to read an untyped buffer. The procedure reports the number of
bytes read. I+ less than the buffer size, the remaining bytes are
filled with NULL characters.

h. Send_Record
(1) Type: Function
(2) Purpose: Send an Xmodem packet out the currently
selected communications port. A building block for file and command
transfers.
(2) Description of Farameters:

Input: Buf, the data portion of the packet;
Blocksize, the size of the data buffer; seconds, the number of seconds
to wait before timing out on acknowledgement; Elock, the ordinal number
of this packet; and errors, & count of the number of errors on the
attempt to return to the calling program.

Output: Buf is unchanged and is a VAR parameter
tor efficiency; errors indicates the number of tries to send the
pachket.

{4) Subroutines Called:

DataCom.Furgeline

Xmodm,. ReadAux

Xmodm. WriteAux

{3} Process Description

Send_Record first calculates a checksum value for
the data in the buffer and then sends the SOH character signalling the
start of an Xmodm packet to the port via WriteAux, followed by the
block number and its inverse, the data and the calculated checksum
value. FurgelLine is called tc clear the receive buffer to prevent an
errorneoucs interpretation of an earlier character received. ReadAux is
then called to listen for the receiver s acknowledgement. Status is
set accordingly. Finally, the keypressed functiarn is checked to an
operator interrupt and status is updated. Status is returned as the
function result,

i. Sync_Receive
(1) Type: Function
2) Furpose: Used to synchronize to receive Xmodem
packets.
(Z) Description of Farameters:

Input: Seconds, the number of seconds to wait
between sending sync characters (NAK for Xmodem); and sync_character,
the sync character to send.

Output: A status code indicating synchronization,
timeout or operator keypress.

(4) Subroutines Called:

CRT.kKeyPressed

DataCom.PurgeLine

DataCom.RS232_Avail

Xmodm. WriteAux

{S5) Process Description

Sync_Recieve calculates the number of ten second
intervals in seconds is calculated. The receive line is cleared and
the sync character is sent. The function then loops waiting for a
character to be received or the operator to press a key for the time
indicated by seconds, sending a new sync character every five seconds.
The function does not check the received character, only whether or not
one was received in the allotted time. A status code is returned as
the function result (packet acknowledged, negative acknowl edge,
receiver requests to cancel the transaction, timeout or operator
keypress).

J. Sync_Send
(1) Type: Function
(2) Purpose: Used to synchronize to send Xmodem
packets.
(Z) Description of Farameters:
Input: Seconds, the number of seconds to wait
between sending sync characters (NAK for Xmodem).
Qutput: A status code indicating synchronization,
timeout or operator keypress.
{4) Subroutines Called:
CRT.KeyFressed
DataCom.Furgeline
Xmodm. ReadAux
(3) Process Description
Sync_Send clears the receive line with Furgeline
and then calls ReadAux to detect a received character. A status code
ie returned as the function result (sync character received, checksum
sync received, receiver timed out or & keypress was detected).

k. Send_EOT
(1) Type: Procedure
(2) Furpocse: To signal the end of a data transfer for
the Xmodem protocol.
(3} Description of Farameters:

Input: Status, to be changed to reflect the
outcome of the call; and Suppress_EOT, a flag set to suppress the
normal EOT on an Xmodem data transfer. Used to concatenate file
transfers.,

Output: Status, reflecting transmission
completed, or a timeout error (or too many errors).

(4) Subroutines Called:
Xmodm.ReadAux
Xmodm. WriteAusx

(3) Process Description

Suppress_EOT is first checked to see i1if the EOT
will be sent. If TRUE, the EOT is not sent and the procedure returns a

170

completion status. This allows successive Xmodem transfers without
encountering the normal flow control reversal. Otherwise, EOT
characters are sent every ten seconds until acknowledged or the
accumulated errors exceed RetryMax, a constant private to the Xmodm
Unit. A timeout status is returned if errors were exceeded, a
transmission complete status if EOT was properly acknowledged.

1. Send_CAN
(1) Type: Procedure
2) Purpose: Used to inform the other side of the
communications link that the Xmodem operation is to be aborted.
{3) Description of Parameters:
Input: None.
Output: Two CAN characters are sent out the
communications port.
(4) Subroutines Called:
Xmodm,. WriteAuy
(5) Process Description
Two CAN characters are sent out the communications
port.

®. Update_Status
(1) Type: Frocedure
(2) Purpose: To display or refresh the current status
of the calling program in a monitor window.
{3) Description of Parameters:

Input: Typically this procedure writes current
information on the status of a data transfer, the number of bytes and
blocke sent or received, and the count of the number of errors
accumulated on the transaction in a formatted display.

Output: A window display of the current status.

{4) Subrgutines Called:
Wndow. Get _Window
CRT.GoToXY

{53) FProcess Description

This process is used several places in this unit,
and operates identically in each. The process depends on the caller to
open & properly sized window and to set a variable called Status_ID to
allow the status window toc be accessed via Get_Window. Once reopened,
the procedure writes the current status information using variables
local to the caller. The procedure then resets the working window tc
that of the caller’'s Monitor_ID.

n. Xmodem_Xfer
(1) Type: Function
(2} Purpose: Perform an Xmodem file transfer.
(Z) Description of FParameters:
Input: Send, TRUE to send a file, FALSE to
receive; and Blocksize, the size of the data buffer to use.
Dutput: A status code indicating success or what
problem was encountered.

(4) Subroutines Called:

Update.Status (local to this function)

CRT.ClrScr

CRT.Delay

CRT.GaToXY

CRT.KeyPressed

CRT.ReadKey

DataCom.RS_Eight_Bits

General .Beep

System.BlockWrite

System.Assign

System.Reset

System,.Rewrite

Xmodm. Sync_Send

Xmodm.Get _Buffer

Xmodm. Send_Record

Xmodm.Sync_Receive

Xmodm. WriteAux

Wndow.Close_Window

Wndow. Open_Window

(3) Process Description

The public variable Monitor_Transfers is checked
te see if & monitor window is to be opened to display the characters
transfered. If TRUE, the window and a monitor file are opened. The
status window 1is then opened and unchanging field names written.
RE_Eight_Bite is called to insure the communications port passes eight
bit data, regardless of its settings. After initializing the variables
usec to report status, the function branches depending on whether a
file iz to be sent or received. If Send is TRUE, Sync_Send is called
to detect sync characters from the receiver. If Sync_Send times out,
the transfer is aborted and the timeout is reported to the caller. IF
sync is detected, file buffers are obtained from Get_Buffer and sent
via Send_Record until EOF is detected or tooc many errors are
encountered. If successful, EOT is sent to the receiver to signal the
end of transmission. The KeyPressed function is monitored at several
points, and will cause an immediate abort with status returned to the
caller. If Send is FALSE, Sync_Receive 1is called to send sync
characters. If a timeout is not encountered, Receive_Record is called
repeatedly to obtain received buffers and monitor status. The transfer
terminates on receipt of EOT (competion), too many errors detected or a
keypress indication, with appropriate status returned to the caller.
Update_Status is called several times throughout each branch to
indicate progress or report errors. The transfer file is then closed,
as are the monitor and status windows. RS_Initialize is called to
reset the communications port teo its previous word length.

o. Command_Xfer
(1) Type: Function
(2) Purpose: Transfer a single command packet.

{3) Description of Parameters:

Input: Send, TRUE to send a packet, FALSE to
receive & packet; Buf, the data buffer send or received; Blocksize, the
size of the data buffer.

Dutput: A status code indicating success or what
problem was encountered.

{4) Subroutines Called:

Update.Status (local to this function)

CRT.ClrScr

CRT.Delay

CRT.GoToXY

CRT.KeyPressed

CRT.Readkey

General . Beep

Xmodm. Sync_Send

Xmodm.Get_Buffer

Xmodm, Send_Record

Xmodm.Sync_Receive

Xmodm, WriteAux

Wndow,Close_Window

Wndow. Oper_Window

(5) Process Description

This +function operates similarly to Xmodem_Xfer,
except that a single Xmodem packet is transferred. The public variable
Moritor_Transfers is checked to see if a monitor window is to be opened
to display the characters transfered. If TRUE, the window and the
monitor file are opened. The =tatus window 1is then opened and
unchanging field names written. RS_Eight_Rits is called to insure the
communications port passes eight bit data, regardless of its settings.
After initializing the variables used to report status, the function
branches depending on whether a file is to be sent or received. I¥
Senc is TRUE, Sync_Send is called to detect sync characters +from the

receiver. I+ Sync_Send times out, the transfer is aborted and the
timecut 1s reported to the caller., IF sync is detected buf is sent via
Send_Record. If successful, EOT is sent to the receiver to signal the

end of transmission. The KeyFressed function is monitored at several
points, and will cause an immediate abort with status returned to the
caller., 1If Send is FALSE, Sync_Receive 1is called to send sync
characters. I+ & timeout is not encountered, Receive_Record is called
to obtain received buffer and monitor status. The transfer terminates
on receipt of EOT (competion), too many errors detected or a keypress
indication, with appropriate status returned to the caller.
Update_Status is called several times throughout each branch to
indicate progress or report errors. The monitor file is then closed,
as are the monitor and status windows. RE_Initialize is called to
reset the communications port to its previous word length.

p. Transfer_File
(1} Type: Frocedure
(2} Purpose: To obtain the name of the file to be
transferred from the local operator.

-r
133

(3) Description of Parameters:
Input: Send, TRUE if a file send is desired,
FALSE to receive a file.
Output: Monitor display.
{4) Subroutines Called:
Wndow.Open_Window
Wndow.Close_Window
Support.NoFile
System.Assign
System.Length
System.Reset
System.Rewrite
System.Upcase
(5) Process Description
Transfer_File first opens a window to ask the
operator what filename is to be transferred. The transfer 1is aborted
and NoFile 1is called if the file is not found or cannot be opened.
Depending on Send, the file is opened for reading or writing and then
Xmoderm_Xfer is called to accomplish the transfer.

q. Respond_by_File
(1) Type: Procedure
(2) FPurpose: To allow the remcte Slave to send the
resultz of a program o- other message contained in a file to the
Master,
{3) Description of Farameters:
Input: Response, the file to be sent.
Output: None from this procedure.
(4} Subroutines Called:
Wndow.Open_Window
Wndow.Close_Window
Cystem.Rssign
System.Length
Syztem.Reset
Eystem.Rewrite
Svetem.Upcase
{S) FProcess Description
Transfer_File first opens a window to ask the
operator what filename is to be transterred. The transfer is aborted
if the file is not found or cannot be opened. Depending on Send, the
file is opened for reading or writing and then Xmodem_Xfer is called to
accomplish the transtfer,

r. Get _Response
(1> Type: Function
{2, Purpose: To allow the Master to receive file
responses from & program completed by the Slave.
(Z) Description of Parameters:
Input: PBlockSize, the size of th: Xmodem buffers,
Output: Status code of the call.

154

r

(4) Subroutines Called:

CRT.kKeyPressed

CRT.Readkey

DataCom.RS_Eight_Bits

Datalom.RS_Restore

Xmodm.Sync_Receive

Xmodm. Receive_Record

Xmodm. Wr i teRAux

System.Assign

System.Close

System.Rewrite

Wndow. TextColor

Wndow. TextBackGround

(3) Process Description

For this function, the monitor window is set to
the current window, and the monitor rile is directed to NUL, the bit
bucket, This satisfies ReadAux and WriteRfux so that the display will
operate properly without creating an unnecessary file. RS_Eight_Bits
is called toc insure the communications port passes eight bit data,
regardless of its settings. After initializing the variables used to
report status, Sync_Receive 1is called to send sync characters. If a
timeout is not encountered, Receive_Record is called to obtain received
buffer and monitor status. The transfer terminates on receipt of EOT
{competicn), too many errors detected or a keypress indication, with
appropriate status returned to the caller. Update_Status is called
several times throughout each branch to indicate progress or report
errors. RS_Initialize is called to reset the communications port to
ite previous word length, and the dummy monitor file is closed.

s. Xmodm Unit Initialization
(1) Type: Um¢t Initialization Procedure
(2} Purpose: To initialize the unit on loading.
{3} Description of Parameters:
Input: Suppress_EOT, Monitor_Transfers.
Output: Suppress_EQT, Monitor_Transfers.
(4) Subroutines Called: None.
(%) Frocess Description
Suppress_EOT and Monitor_Transfers are set to
their default values.

{
APPENDIX P
SOURCE LISTING FOR UNIT DATACOM

3

R e TR IR I I Ry Y I YYT I T I TR N2
(%% DATACOM. PAS *E®)
{(»x%% This is the unit that accomplishes all interface to the ##¥#%)
{(®x*%* communications ports for character, string and buffer FHER)
(##%% transfer. It also initializes the communications ports *#¥#)
(x%%%¥ and provides interrupt interrupt service routines for *EER)
(xx%% character receive. ¥HER)
(®%%¥ FREHR)
{(¥%%% References: *HIEKE)
(3% %% Intertace: Edwards, C.G., Advanced Techniques in EHEH)
(%%% Turbo Pascal, pp. 220 - 238, Sybe:x, FHER)
€2 23] Inc., 1987. FEER)
{#%*% EREE)
(*%%% Multiple FHEF)
{Fxx% Forts: Eimura, N., <abcscnuk@csuna.uucp:, *HEX)
(H*%S info-pascal-@vim.brl.mil message, 1222)
(%x+% Subject: Re: TFP4.0 Aux Froblem, FEEE)
(#%%* Message-1D: < 127&6@csuna.uucp’, ¥HER)
(#®%% 17 Nov B8 10:20:54 GMT. *ERE)
(% %5 % P22 2
(H¥x% Low Level FHRR)
(#%%% Procedures: de Boer, R., <“reino@euraivi.uucpr, *H¥EH)
(H%%* info-pascal-@vim.brl.mil message, *HEE)
(%%%% Subject: Serial Unit in TP4, ERER)
(HE%x Message-1D: <797@euraivi.uucp:, #RER)
(®%%* 15 Nov 88 14:17:15 GMT. ERHR)
(% %%% E2 22
(%% UART/FIC ERER)
{#*x> Declarations: Greenberg, R.M., "TSRCOMM, a Replacement ##¥%)
(%% for Interrupt 14", source listing, HHER)
(ReHH® Ross M. Greenberg, 1987. FRER)
(963% %% % ®K)
(##%# Developed by Nelson Ard. HEEHE)
{ans ERER)
(¥#%+ Last modification Sep 89. HHEE)

96 96 96 3 3 36 3636 30 9 36 3 36 3 36 3 36 3 3 9 3 3 3 3 I 3 I U I 6 I 3636 6 I A IE I I 36 I I I 36 I I I 36 I A0 I 63U I W I K)
(*# Mcdification history

8 Sep B% - added RS_Eight_Bits to change the port data work
width to eight bits for Xmodem protocol operation.

13&

UNIT DATACOM;
INTERFACE

USES General, CRT, Dos:

CONST
CoM1 = 1;
CoOM2 = 23
oMz = 33 {not implemented, but MS-DOS knows about them’
COM4 = 4; {not implemented, but MS-DOS knows about them>

(HEFHHERRHFRRRFREREXRAE%% Start Edwards Excerpt #eeeeeeiaidtriees)
TYPE
RS_Baud = (B11C,B150,B300,B600,R1200,B2400,B48B00,B9600,RB19200,
B38400)
RS_Parity = (None,0dd,Nevermind,Even);

RS_Config = Record
Stop,
Length : byte;
lias : stringll0l;
Speed : RS_BRaud;
Farity : RS_Farity;
IRENGC byte;
installed : boolean:
erd; { RECORD

FortRange = COMi..COMZ;

V&R
Current _Com : Byte: {public, specifies current port for
command or file transfer;
ComFart : ARRAY [FortRange 1 OF RS_Config:

Frocedur-e RS_Breal;
{ This procedure instructs the currently selected data communications
po-t to send a break signal:l

Function RS232_Avail:Boolean:

{This function returns TRUE if there are characters to be read from
the RSZZZ port. It is analogous to the Turbe function KEYPRESSED for
the kevboard.

-
P

{(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Cooyright 1987 Svbex, Inc. All rights reserved.

FREXFRFFERFAIRARRRFRE CoOntinue Edwards Excerpt SEsssssiasdiirssrsissrs)

137

(i eprnririnrnxxdr Continue Edwards Excerpt S#e3keddiiiniesinis)
Function RS222_In:Char;

{The AUX device is set to point to this function for input. It returns
the next character received from the RS232 port.

Y
4

Frocedure RS232_0Out (Param : Char);
{ Sends the character to the RS232 port. 7

Procedure RS_Initialize(Com:Byte;Speed:RS_BaudiParity:RS_Parity;
Stop,Length:Byte);

rs

Initialire communications port. Vector the appropriate interrupt to
point to our interrupt service routine. Initialize hardware
handshaking lines. Store current settings in a data structure for
restoration.

Input: COM - The RS23IZ port to be handled
Speed - The baud rate of the line
F - The parity of the line
Stop - The number of stop bits

Length - The number of data bits

\,
4
Frocedure RS5_Cleanup;

{This procedure should be called on exit to disable interrupts on the
RS232 port and reset everything to its default state.

b3
h

{# Reprinted with extencsive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FXHEFEXERERRRERERZAXRREXRE End Edwards Excerpt HEXESEAREREEREREEREXERHR)

Frocedure FurgelLine;
{ This function clears the receive buffer and UART receive buffer for
the currently selected port?

Function Connected : boolean:
{ Returns TRUE if the Data Set Ready line is true, signalling hardware
handshaking >

Function RS232_peek : Charj

Id

{ Added to allow nondestructive read of the currently selected port
input buffer for x»modm.Sync_receive’

128

Frocedure Send_String (S : String);
{ Send a string out the currently selected RS232 port I

Frocedure RS_Restore (COM : byte);

{ Reinitialize the COM Port

Procedure RS_Eight_Bits;

r

{ Adjust the comport for eight bits regardless of current setting 2

4

139

IMPLEMENTATION

(RN NREREREXRRRRREXRE Start Greenberg eXtract %6504 89 33 3 5 I 5% %%)

CONST
{ UART declarations }
{ Interrupt Enable Register }

{ Or one or more of these bits to enable the respective interrupts 2

IER_RDA = $#01; { Receive Data Available Int Bit = - -—-= --- 132
IER_THRE = $02; { Transmitter Hold Register Empty Bit ---- --1-1}
IER_RLS = $04; { Receive Line Status Int Bit - =1--}
IER_MS = $08; { Modem Status Int Bit ———— -}
{ Interrupt ldentification Register J

{ Check the lower four bits to see what interrupt called 3

IIR_RLS = #05; { Receiver Line Status Interrupt —-—== =101
IIR_RDA = #04; <{ Receive Data Available ===~ =100 3}
IIR_THRE = $02; <{ Transmitter Hold Register is Empty --—— -010 }
IIR_FEND = $013 { zeroc if * any * interrupt pending === =001 >
TIR_MS = #0003 { Modem Status interrupt ~——= =000]

By

Line Control Register @

r
3
{ Or one or more cof these bits to select comm port parameters 3

{ CR_CHRS = $00; { Five bit character = —-=- == Q0 3
LCR_CHRS = $#01; { 8ix bit character = = —- 01 3
LCR_CHR7Y = $0Z2y { Seven bit character @ == -~ 10 3
LCR_CHRS = $33; { Eight bit character = ==—= -—- 11 3
LER_GTOFRE = $00; { One stop bit === =0== 3}
LCR_ETOFZ = #04; { Two stop bits === =1-= 3
LCR_NOFPARITY = #00; { No parity ——== Q~—
LCR_PARITYEN = $0B; { Enable parity (see SFARITY and

EPARITY —-——= 13
LCR_EPARITY = #10; { Even parity bit -—-1 --— 13
LCR_SPARITY = $20; { Stick parity =1 ===
LCR_BREAK = $40; { Transmits a BREAK (space) -1-- -=—= 3
LCR_DLAR = $80; { Divisor Latch Access bit 1--- ———- 3

(# Reprinted from "TSRCOMM.ASM A Replacement for Interrupt 14" by Ross

M. Greenberg, by permission of the author.
Greenbterg. All rights reserved.

EEEEERRFXRFRF4F4%++%2% COntinue Greenberg Excerpt

140

Copyright 1987, Ross M.

33646 39 3 396 33X HRX)

(sekwkakennitrieixxxxxx Continue Greenberg extract 33636 3 9 36 36 96 36 96 3 36 I 36 W 3 I3 36)

{ Modem Control Register }
{ Or one or more of these bits to signal the modem }

: MCR_DTR = $01; { set Data Terminal Ready = = = —-=== -=- 13
MCR_RTS = $02; { set Request To Sent ———— == 3
MCR_OUT! = $¥04; { Output 1 (resets Hayes modem) ———— ==}

’ MCR_QUT2 = $08; { Output 2 (allows comm
port interrupts) ——— -
MCR_LOOF = $10; { Loopback test -1 ===}

{ Line Status Register
{ Test one or more of these bits to determine comm port status >

LSR_DATA = $01y { data is available === ——- 17
LSR_DOVERRUN = #0Z; { overrun error bit ———= -=1- 7
LSR_FARITY = $04; { parity error bit i Rt
LSR_FRAMING = #08; { framing error bit === 13
LSR_BREAEK = $10y { BREAK detected bit -1 == 1
LSR_THRE = $20; { Transmit Holding Register Empty --1- -———- }
LSR_TSRETY = $40; { Transmit Shift Register Empty 1= -

1,

{ Modem Status Register 3
{ Test one or more of these bits to determine modem actions

()

MER_DEL_C7S = %013 { delta Clear To Send = -——= ——- 13
MSR_DEL_DSR = $02; { delta Data Set Ready S L
MSF_EDGE_RI = %04; <{ Trailing Edge of Ring Indicator --—-- -i--
MSR_DEL_SIGL = #08; { delta Receive Line Signal Det ——=
MSR_CTS = ¥1Gy { Clear To Send -—=1 ==
MSF_DSR = $20; { Data Set Ready -1~ -
MSFE_RI = $40; { Ring Indicator - entire ring 1= —~—= 3
MSR_DCD = $803y { LData Carrier Detect - on line 1=~= -~ ¥

(# Reprinted from "TSRCOMM.ASM A Replacement for Interrupt 14" by Ross
M. Greenberg, by permission of the author. Copyright 1987, Ross M.
Greenterg. Al] righte reserved.

IZ XTSI LITEL SIS LS X End Greenber‘g E)-:Cerpt EETTTTTILTILIEI LTI L L L)

[,
»
[

e

(HEERFRRXERRRRRRERRH Start Edwards Excerpt S6Eeeeieeeerti e iiiss)

{ IRQ Lines 3
IRGline : ARRAY [FortRange 1 OF byte = (4, 3);

TYFE

INS8250 = record

THR : word; { Transmit Holding Register
RBR : word; <{ Receive Holding Register 1}
IER : word; { Interrupt Enable Register
1IR : word; { Interrupt Ident Register }
LCR : word; { Line Control Register 3
MCR : word; { Modem Contro Register }
LSR : word; { Line Status Register ¥
MSR : word; { Modem Status Register 3
DiL : word; { Divisor Latch LSB by
LM : word; { Divisor Latch MSE b
END:

CONST
RS_Buffer_Size = 40935; {Size of Buffer - 1...Change this if you
want a different buffer sizel)

{ 8259 FIC declarations >

ISR = $20; { Interrupt Service Register }
MR = $21; { Interrupt Mask Register }
IRB4_Mash = $EF; { Enable for COM1

IRGZ_Mazk = #F7; { Enable for COM2

L IBM FC comm port interrupt vectors 3

COM1 _INTR = $0C;

COM2_INTR = #$0F;

RS_trror : byte = 0;
Cht_DER : boolean = FALSE;
Chk_C7% : boolean = FALSE;

Regs : Array [1..21 of INSB250 =
((THR: $3F8; RBR:$#3F8; IER:$3F9; IIR:$3F9; LCR:#3FB;
MCR: $3IFC; LSR:$3FD; MSR:$7FE; DLL:#$3F8; DLM:$3F9),
(THR: $2FB; RBR:$2F8; lER:$#2F9; IIR:$2F9; LCR:$2FB;
MCR:$2FC: LSR:#2FD; MSR:3$2FE; DLL:$2FB; DLM:3$2F9));

(# Reprinted with ertensive modifications from Advanced Techniques in
TJurbo FPascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Mod:f1ed after "Re:: TF4.0 Auy Problem” by Naoto Kimura, reprinted
by permicszior of the author.

ERFRFSLFARFREARERFREFS Continue Edwards E;-(Cerpt 63603 36 36 I I I3 AN RR)

142

{(RRHXRRFRERER A FERA¥% Continue Edwards Excerpt ##EEEEEEEEREREXERERER)
Var RS_Buffer : Array [1..2,0..RS_Buffer_Sizel of Byte;
RS_Bu+f_Head,
RS_Buf_Tail : Array [1..2] OF word;
index : byte;
Line_settings : byte;

Procedure Disablelnterrupts;

{ Insert assembly code to disable computer interrupts }
INLINE ($FA);

Procedure Enablelnterrupts;

{ Insert assembly code to enable computer interrupts 3
INLINE ($FR)3

Function RS232_Avail:Roolean;

{Thiz function returns TRUE i there are characters to be read from
the RSZIZ port. It is analogous to the Turbo function KEYPRESSED for
the keyboard.

Begin
Rs222_Avail :=
RS_Buf_Head [Current_COM 1 <> RS_Buf_Tail ([Current_COM 1J;
End; {or R8232_Availl

Frocedure RSZ32_ISK1
(Flages, CS, IF, AX, BX, CX, DX, SI, DI, DS, ES, BF : word);
INTERRUFT;

{ This procedure handles interrupts from RS232 port ane
THIS PROCEDURE MUST NOT BE CALLED BY ANY OTHER PROCESS &

Begin
Disablelnterrupts:
RS_Error:=Fortl Regsl COM! J.LSR J and #1E;
RS_Buffer(COM1, RS_Buf_Tail [COML 1] := Port[Regsl COM1 1.RERI1:
RS_Buf_Taill COM1I 1 := { RS_Buf_Taill COMI 2+1)
mod (RS_Buffer Size+1);
Enablelnterrupts;
Fortl #20 1 1= %204 {Report end of service to FIC?
End: <{of RS2I2_ISR1 3

{+ FReprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwarde, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All righte reserved.

Modifiecd afte- "Res: TF4.0 Aux Problem” by Naoto Kimura, reprinted
bty permissiorn of the adthor,

EREEFEERERFEFEXEIHF%% Continue Edwards ExCerpt #6 “Eriisriipssrriiss)

(HRRRERREEREFRRRRS2% Continue Edwards Excerpt #ERrXEsi®dsdeieiiir)

Procedure RS232_ISR2
{Flags, CS, IF, AX, BX, CX, DX, S5I, DI, DS, ES, BF : word);
INTERRUFT;

{This procedure handles interrupts from RS232 port two
THIS PROCEDURE MUST NDT BE CALLED BY ANY OTHER PROCESS)

Begin
Disablelnterrupts;
RS_Error:=Fortl Regsl COM2 1.LSR] and #1E;
RS_Bufferl COMZ, RS_Buf_Tail [COM2 1] := PortfRegs{ COM2 1.RBRI;
RS_Buf_Taill COM2 1 := (RS_Buf_Taill COMZ 1+1)
mod (RS_Buffer_Size+l);
Enatlelnterrupts;
Fortl 320 1 1= $204 {Report end of service to FIC}
End; <{of REB2IZ2_ISRZ ?

Frocedure RE_Break;
{ Thaz procedure instructs the currently selected data communications
port to send a break signall

RBecin
Fort[Regsifurrent_Coml.LCR] :=
FortIRegsl{Current_Coml.LCR1 or LCR_BREAEK;
Delay (200 ; {1/% second?
FortlRegsiCurrent_Coml.LCR] :=
FortfRegslCurrent_Coml.LCR]) xor LCR_BREAK;
gEnd; {of RE_Ereakl
Sunction RE2IZ_In:Char;
{Trhe AUx device is set to point to this function for input. It returns
the neut character received from the RS2IZ port.

4
4

Regin
While RS_Euf_Head [Current_COM 1 = RS_Buf_Tail [Current_COM 1 Do
Delay(iQ);

RE2ZZ_In 1=
Char (RS_Buffer [Current_COM, RS_Buf_Head [Current_COM 11);
RS_Buf_Head [Current_COM] :=
(RS_Buf_Head [Current_COM 1+1) mod (RS_Buffer_Size+l);
End; {of RSZI2_In3

(* FReprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modified after "Re:: TF4,0 Aux Froblem" by Naoto Kimura, reprinted
by permizsiorn of the author.

FERRFFRESFF >R AF¥REEE COntinue Edwards Excerpt SErdsdailteieiisiss]

144

(REEFEFRRERFRXAERRRXE Continue Edwards Excerpt #EEEsisdieiiteiins)

Frocedure RSZ32_0Out (Param : Char);

h)

{ Sends the character to the RS232 port. I

Begin
While ((Port [Regs [Current_Com J.LSR] and $20) <> $20)
{Transmit Reg empty’
do Delay(1):
(# Request to send %)
Fort [Regs { Current_COM 1.MCR 3 := MCR_RTS OR MCR_OUTZ;
IF Chk_DSR THEN
While ((Fortl Regs [Current_COM 1.MSR] and MSR_DSR) <> MSR_DSR)
do Delay (1) {Wait a whilel
IF Chk_CTS THEN
While ((Fortl Regs [Current_COM 1.MSR1 and MSR_CTS) <> MSR_CTS)
do Delay(1l); {Wait a whilel
FortlRegsl Current_COM 1.THR] := Byte (Faram);
RS_Error:=i
End:

(¥ FReprinted with extensive modifications from Advanced Techniques in
Turbe Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modified after "Re:: TF4.0 Aux Froblem" by Naoto Kimura, reprinted
by permission of the author.

FREREFEEEEERXRXXRXXRREEE End Edwards Excerpt SEESfEksfriEiEiditiiex)

(FEEFERFFRFXARERERRREREXE% Start de Eoer extract #EEEEEeEeieeieres)
FROCEDURE Emable (IRR : byte)i

-

7 Set the Interrupt Mask Register on the Frogrammable Interrupt
Controller to recognize interrupts from this port X
BEGIN
Fort [IMR] := Fort [IMRI AND NOT (1 SHL IRQ):
END; ¢ Enable ?

PROCEDURE Disable (IRG : byte);

{ Reset the Interrupt Mask Register on the Frogrammable Interrupt

Contreller to ignore interrupts from this port >

BESIN
Port [IMRY := Fort [IMR] OR (1 SHL IRQ)3
END; { Disable

(# Reprinted from "Serial Unit in TF4" by Reino de Bper, by permission
of the author., Copyright 1987 Reino de Boer. All rights reserved.
FERXRERREEREXRRRRR R A% XFY Continue Boer Evcerpt #EXxsiiaiisriiigisisss)

145

[=

(RRXERERHERREXERAXEXRXRAXE CONtinue de Boer extract #FEEEEesssdadrieetssr)

PROCEDURE Establish ¢ COM : byte);

{ Raise all hardware handshaking lines toc prepare for
communications 3

BEGIN
WITH Regs [COM 1 DO

Port [MCR 1 := MCR_DTR OR MCR_RTS OR MCR_OUTZ;
END;

FROCEDURE SendEDI (IRE : Byte)j

{ Send an End 0f Interrupt command to the Programmable Interrupt
Controller to let it know we are done servicing this interrupt

BEGIN
Port [ISR] := %60 OFR IRG;
END;

Frocedure ResetZhip (Com : Byte)

{ Disable UARRT genersated interrupts, drop the hardware handshaking
lines, Shut down the currently selected communications port 2

4

Var Dummy : byte:

EBegin
WITH Regs [Com 2, Comport [Com 1 DO REGIN
WHILE ¢ ¢ Fort [LSR 1 AND LSR_DATA) <> 0) DO
Dummy := Fert [RER I3

Disablelnterrupts:
{ Allow nore of the interrupt types 3
Fort [IER 1 :1= 03
{ Tell w2~ wz’'~2 net ready ?
Fort T MCR I := Fort [MCR] AND
NCT (MCR_OUTZ QR MCR_DTR OR MCR_RTS);
{ Disable all interrupte for this port ?
Disakle (IRGNo)3
Enablelnterrupts:
END;s
END;

ZONST { BEit rate divisor table 3
Divisor : ARRAY [RS_Baudl OF word =
¢ 1047, 768, IB4, 192, 94, 48, 24, 12, 6, T);

(* Reprinted from "Serial Unit in TF4" by Reino de Boer, by permission

of the authc~. Copyright 1987 Reino de Boer. All rights reserved.
REFEXFEXRERF X2 X2 %%%¥2* Continue Boer EXCOrpt #RA¥Eiiiiisiisiiisisss)

14¢

(RERERRREEXREXRERERXRENXE COntinue de Boer extract HEEEEmrdt®reeeisiss)

{ Select bit rate by programming the FBRG 3
PROCEDURE SelectRitRate(COM : byte; Speed : RS_Baud);

CONST PBRG_Settle : word = 250;
VAR BaudDiv : word;

BESIN
{ Update port data
ComPort [Com J.Speed := Speed;
BaudDiv := Divisor [Speed 1;
{ Set Divisor Latch Access Bit }
portf Regs [Com 1.LCR J :=
portl Regs [COM J.LCR] OR LCR_DLABR;
{ Bit rate divisor to PBRG }
portwl Regs [COM J.RER] := BaudDiv:
{ Give port some time to settle ?
delay(FERG_Settle !
{ Reset function of RER 3
portl Rege [COM 1.LCR 1
portl Rege [COM 1.LCR
END; { SeiectBitRate >

J XOR LCR_DLAE;

"

{ Set word length i:n Line Control Register 3
FROCEDURE SelectWordlength(COM : Eyte; Length : byte);

VaR Linelorirol : bvte;

REGIN
{ Update port data 3
ComFort [Com J.Lenagth := Length;
LineContral := portl Regs [Com 1.LCR 13
LineControl := (LineControl AND (NOT LCR_CHR8) }
OR (Length - 5);
{ Set relevart bits 2
nortf! Regz [£OM 1.LCRI := LineControl;
END; { SelectWordlLength >

{(» Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the author., Copyright 1987 Reino de Boer. All rights reserved.
FEREREHLAXERERRRRS 2R 2% COntinue Boer Excerpt #EAfeisiissrxiiiiipssy)

147

(HERERERERREEEXFXRXRXERE CONtinue de Boer extract #%EEEEEEHENEEREE%EERE)

{ Set stopbits in Line Control Register)
PROCEDURE Selectframing(COM : Byte; Stop : byte };

VAR LineControl : byte;

BEGIN
{ Update port data >
ComPort [Com J).Stop := Stop;
LineControl := portl Regs [Com 1.LCR 33
LineControl := (LineControl AND (NOT LCR_Stop2))
DR ((Stop - 1)%#4);
{ Set relevant bits }
portl Regs [COM 1.LCR 1 := LineControl;
END; { SelectFraming ?}

Y

{ Set parity in Line Control Register }
PROCEDURE SelectFarity(COM : byte; Parity : RS_Parity);

VAR LineControl : bvyte;

BEGIN
ComFortl Com J.Farity := Parity;
{ Undate port data >
LineCortreol := portl Regs [Com 1.LCR 3J;
LineCaontrol := (LineControl AND (NOT #40))

OR ORD(Farity)#*B8;

{ Set relevant baits >
portl Rege [COM J.LCR] := LineControl

END: ¢ SelectParity 2

CONST RTS_Settle : byte
DTR_Settle : byte
FEBRG_Settle : word

3+)

-
U we ae

sH
{(# Reprinted from "Serial Unit in TF4" by Reino de Boer, by permission

of the author. Copyright 1987 Reino de Boer. All rights reserved.
FRXRRFXEFEREFERXXXRXREXRFX ENd de Boer Excerpt ¥k idiidiEiirieiisisx)

148

-

Frocedure Purgeline;
{ This function clears the receive buffer and UART receive buffer for
the currently selected port}

VAR
* Dummy : Byte;
] BEGIN
s RS_Buf_Head [Current_COM 1]

RS_ _Buf_Tail [Current_COM 1
Dummy := FortlRegs[Current_COM]. RBR].
End; {of Purgelinel

FUNCTION Connected : boolean:
{ Returns TRUE if the Data Set Ready line is true, signalling hardware
handshaking 2

BEGIN
Connected := Port[Regs{Current_Coml.MSR1 and $80 = $80;
END;

Function RSZZ2_peek : Chary
{ Added tc allow nondestructive read of the currently selected port
input buffer for xmoadm,Sync_receivel

Begin
While RS_Buf_Head [Current_COM 1 =
RS_Buf_Tail [Current_COM 1 do Delay(10);
. REZ3IZ peel := Char(RS_Bufferl Current_COM,
RS_Buf_Head [Current_COMI 1)
End; {of RSZZZ_Peei!

Frocedure RE_Eight_Bitsy
{ Adjust the comport for eight bits regardless of current setting 3
BEGIN
Fort [Regs [Current_Com 1.LCR 3] := LCR_NOFARITY OR LCR_STOF1
OR LCR_CHRE&;
END:
FProcedure RS_Restore (COM : byte);
{ Reinitialize the COM Fort 3
. BEGIN
WITH Comport [COM 1 DO

RS_Initialize(Com, Speed, Farity, Stop, Length)3
ENL;

149

Procedure Send_String { S : String)
{ Send a string out the currently selected RSZ232 port

BEGIN
IF Length (S) > O THEN
FOR index := 1 to Length (S) DO
RE2T2_ Out (S [index 1);
END;

(#HEXEAXFARXRXXXRXAXNEE Start Edwards Excerpt #EEfeieeiirrieiitiiess)
Procedure RS2Z2_Init (COM, Params : word);

{ Call BIOS interrupt %14 with a formatted word to initialize the
currently selected communications port I

VAR Regs : DOS.Registers;

BEGIN
Regs.DX := Com-1;
Regs.AX := Farams;
Intr (£14,Regs);
END;

“rgcedure RS_Initialize(Com:BRyte:;Speed:RS_BaudiFarity:RS_Farity:
Stop,lLength:Byte)

-

Initialize communications port. Vector the appropriate interrupt to
point to our interrupt service routine. Initialize hardware
handshaking lines. Store current settings in a data structure for
rectoration.

Input: COM ~ The RSB23Z port to be handled
Speed - The baud rate of the line
F - The parity of the line

Stop - The number of stop bits
Length -~ The number of data bits

)
4

Var Params : word;

(¥ Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modified after "Re:: TF4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

AREREEFEEREF RS *EXX%A%% Continue Edwards Excerpt tZTTTTTTTELILTL LS L L 2 D]

(3636 36 36 36 36 36 36 36 3 3696 3636 3 3 36 36 3 % 9369636 96 3696 96 96 96 96 36 6 96 96 3 95 3 ¥)

Begin
WITH Regs [COM 1 DO BEGIN
Current_Com:=Com; {save comm port in local variablel
Farams := Ord{(Speed)#32 + Ord(Parity)#*B8 + (Stop-1)#4 + Length-5;
{ Calling the BIOS service to initialize the port
clears # all UART interrupts >
RSZ32_Init (COM, Farams)i
Delay (PBRG_Settle); { delay to allow UART to settle }
Port [LCR 1 :=
Fort [LCR 1 AND (NOT LCR_DLAE);
{ Set our interrupt handler >

Continue Edwards Excerpt

CASE Com OF
1 : SetlntVec (COM1_INTR, Addr(RS232_ISR1));
2 1 SetlntVec (COMZ_INTR, Addr(RS2ZI2_ISR2))

END;:

ResetChip (Com)3

Disablelnterrupts;

Estabiish (COM)

Enable ¢ Comport [Current_Com J.IRONo)j
on receive only ¥

coM 1.IER] := IER_RDA;

A

part buffer

-

{ Interrupt
Fort [Fegs [
+ Clear the

RS_Buf_Head [Com 1 :=0:
RS_Buf _Tail { Com 1 :=0;
{ Reset any stray interrupts in the FIC 3
SendeQI (Comport [Current_Com J.IRGNo g

Eratlelnterrupts:

Comport [Current_Com 1.Speed := Speed;
Comport [Current_Com 1.Farity := Farity;
Comport [Current_Com J1.Stop := Stop;
Comport [Current_Com J.Length := Length;
Comport [Current_Com l.Installed := TRUE;
END;
Endg; f{of Initializel

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modified after "Re:: TF4.0 Aux Froblem" by Naoto Kimura, reprinted
by permissior of the author.

Modified after "Serial Unit in TF4" by Reino de Boer, reprinted by
permiscion of the author. Copyright 1987 Reino de Boer. All
rights reservec.

2L 222222222222 2222 8 33 33 3 36 36 3 3 3 3 3 3 3 36 36 9 %)

Continue Edwards Excerpt

(FxEERAAFXFxexxxxxrxr Continue Edwards Excerpt ##%EEEEEHEREHEREERLE)

CONST
ExitFtr : pointer = NIL;

OldiIntVec!l : pointer = NIL;
DldIntVecl : pointer = NIL;
01d_IMR : byte = 03
0ld_IER1 : byte = 03
0ld_IERZ2 : byte = 0;

Procedure RS_Cleanup;

{This procedure should be called on exit to disable interrupts on the

R5232 port and reset everything to its default state.
N

Begin
Comport [Current_Com l.Installed := FALSE:
ResetChip (Current_Com)i

Endy <{of Cleanup?

{# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Syhex, Inc.
Copvright 1927 Sybex, Inc. All rights reserved.

Modified after "Re:: TF4.0 Aux Problem" by Naoto Kimura, reprinted
by permizsion of the author.

Modified after "Serial Unit in TF4" by Reino de Boer, reprinted by
permicesicon of the auvthor. Copyright 1987 Reino de Boer. All
rights reserved.

FRERERFRAREFXRFEREFF X Continue Edwards E}(Cerpt (2222 TEZILTLILILTSIL TS S D

(HHERXERERRRRRRXRXX%E COntinue Edwards Excerpt #Eesrersisiiieiesises)
(# This is the error handler for Datacomm #)

{HEXRXREREERXRREREARXHARXXHHAE Start Swan Excerpt ##eeesee i iiiiiris)
CONST
HexDigit : ARRAY [0..15] OF Char = '0123456789ABCDEF ";

TYPE
string2 = stringl2];
string4 = stringl41;

FtrRec = RECORD
Ofs, Seg : word;

END;
FUNCTION HexByte (B : Byte) : string2;
REGIN
HexByte := HexDigit [B SHR 4] + HexDigit[B AND #F3;
END;

FUNCTION He:x (I : Word) : stringé;

BESIN
He» 1= HexByte(Hi(I)) + HexByte(lLo(I));
END:

{(* Reprinted from Mastering Turbo Pascal Files By Tom Swan, by
permission of Howard W. Sams and Company. Copyright 1987 Howard W.
Samz and Comparny. All rights reserved.

FEEEFFRERERXEERERFFERXFERRXEE ENG Swan Excerpt RFEiiiediidriiriirss)

{3%+} PADIZEDURE Datacomm_Error; {3F-3

{ Thic is the Exit Frocedure for * this * unit 2

V&R index : bvte:
BESIN
IF {ExitCode <>) OR (ErrorfAddr <> NIL) THEN
BEGIN
Aseign (Output, “)3

Rewrite (Qutfut);

(¥Wr-iteln (#7)3%)

iF ExitCode = #FF THEN
Writeln ("USER BREAK ")

ELSE

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modifiec after "Re:: TR4.C Aux Froblem" by Naotc kimura. reprinted
bv oermissior of the author,

*FFFEEdpFHRF ¥ >4 Continue Edwards Tucerph #¥¥ArsidXidirsrdins)

(#EXXFXRXXRERREXXR2%% Continue Edwards Excerpt %eessssdiaieitiiis)
BEGIN
Writeln ('Critical Error # ', HEX(ExitCode));
Write('AT PROGRAM LOCATION)
Writeln(HEX(seg{ErrorfAddr™)),': ', Hex (ofs(ErrorAddr™)));
END;
END;
Disablelnterrupts;
{ Restore th=2 previous interrupt vectors J
SetintVec (COM1_INTR, OldIntVecli);
SetIntVec (COMZ_INTR, OldIntVec2)i
Enablelnterrupts;
{ Shut down the ports I}
FOR index := COM1 TO COM2 DO BEGIN
Fortl Regs [index J].LCRJI:=Portf{ Regs [index 1.LCR] and $7F;
Portl Regs [index J,IER}:=0;
Fort{ Rege [index J].MCR1:=0;
END;
{ Restore the FIC interrupt mask 3
Fort [IMR 1 := Old_IMR;
ExitProc 1= ExitPtr;

3,

END; { Datacomm_Error >

BEGIN 7 Urit Initialization I
Checkbreak := TRUE;
¢ Save the existing exit procedure for this unit 7
ExitPtr 1= ExitFrocy

Save the erxisting interrupt mask for the FIC >

d_IMR := Fort [IMR 3;

Save the current serial port interrupt vectors

etIntVec (COMI_INTR, DldIntVecl);

GetintVec (COMZ_INTR, GldintVecl):

{ Clear the receive buffers J

RE_Buf_Head [COMLI J = O3

RE_Buf_Head [COM1 1

RE_Euf_Tail [COM2 1 :=

RS_Buf_Tail [COMZ 1 = O3

7 link in our unit exit procedure to undo all of the above on
program termination J

ExitFroc := Addr (Datacomm_error);

{ Set up both ports to initial values I

HESN O H
(W H

.
11

(# Reprinted with extensive modifications from Advanced Technigues in
Turbc Fascal by Charles Edwards, by permission cf Svbex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modified after "Re:: TF4.0 Auwx Problem®™ by Naoto Kimura, reprinted
ov permission, 0f the author,

FFHEF SR EFEFF2a¥¥¥E Continue Edwards Eucerpt #¥:isdsidrrdtardiiss)

9969 3096 36 3636 0 36 36 3606 3690 36 3 X %
FOR index := COM! TO COM2 DO
WITH Comportlindex] DO BEGIN

Stop HERD

Length := 8;

Alias := "3

Speed := B4800;

Farity := None;

IRENo := IRQLine [index 1;

Installed := FALSE;
end; { COMPDRT initializaton X
END.

Continue Edwards Excerpt

33633630 36 36 36 36 30 96 36 36 30 36 3 36 3 %)

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybe:, Inc.

Copyright 1987 Sybex, Inc.

All righte reserved.

Modifications reprinted from "Serial Unit in TF4" by Reino de Boer,

by permission of the author.
righte recerved,
[AAZERFEERER PR R AR SRR EF

Ernd Edwards Excerpt

Copyright 1987 Reino de Eoer. All

HREAEEFRRREFEERERERERE)

~~

APPENDIX @

SOURCE LISTING FOR UNIT DIRECTOR

3

3466269696 3636 06 36 20 20 0020 J 300 36 0T 300 I I I I I I 2T I I3 2 I I3 I3 R R KR)
(%% DIRECTOR.PAS HHER)
(xxxereixxrixex*® Turbo Pascal 4.0 unit to read a directory *#¥%#¥#is)
(#REXEEXERERERE* and display it FRRREEENR)
(#xxxpensneexn*xx Dater 28 July 1989, 10:06:53 MEZ RAEEERERRR)
(xexxkkxe*xxxkxt From: Christian Boettger HRHRRERER)
(#E%EXEEXERZRREHE +4F (0)531 3915113 / 12010506 at DBSTUL FRRRNNERR)
(* *)
(% Modified slightly to change presentation *)
(% for the window manager *)
(% and to use the error reporting capability *)
(+ of UNIT ErrorCod *)
(* by Nelson Ard *)
(% Last modification Sep 89 *)

(EREFEEFEEREREESFHREE R R RIS RE R R R AR R NN LR ERRRRRERERR)
unit director:

interface

uses dos,crt, ErrorCod; {ErrorCod added?

string; FromLine, TolLine : integer);

string; Fromline, ToLine : integer;
integer);

procedure ViewDir (MatchFtrn
nrocedure ShowDir (MatchFtrn
var error

{#* Reprinted from "Turbo Fascal 4.0 unit to read a directory and
display it” by Dipl. Fhys. Christian Boettger, by permission of the
auvthor.

FEEEFREFRERE %R ¥ R%%%#% Continue Boettger Excerpt SEX#riiiriieriietsex)

(ke eREERxErxxnx®2#% Continue Boettger Excerpt
implementation

procedure StandBy:
var i,y integer;
muell charjg

begin
x1=whereX;
HighVideo;”
write(’'Hit any key to continue
NormVideo;
repeat until keypressed;
muell := Readkey;
write(’
GotaXY (i,y);

end;

y:= WhereY;

oF

{# Reprinted from

369695 9696 36 36 9636 36 36 36 36 9 96 96 9696 5 %)

"Turbo Fascal 4.0 unit to read a directory and

display it" by Dipl. Phys. Christian Boettger, by permission of the

author.,

FEPEFRRFEXEX SRR R RES ¥ ¥R* End Boettger Excerpt

-
Ny

1

(2T 222 2T L LT E N

{HXXXXRRERRARRRRXXXRRE Start Verbraeck EXCerpt #EfEssesiiiiieieeses)

procedure ViewDir (MatchPtrn : string; Frombine, ToLine : integer);

€ 396 3696 36 36 36 36 96 336 96 96 3 36 36 36 336 9 3636 36 3 3 3 3 0 36 6 I 36 36 3 I A 36 96 336 369636 36 36 6 96 369696 96 96 96 06 96 36 36 6 96 96 96 96 96 36 96 96 ¢ H

Ir. Alexander Verbraeck e-mail:
Delft University of Technology winfave@hdetudi.bitnet
Department of Information Systems winfave@dutrun.uucp

PO Box 356, 2600 AJ The Netherlands

936 36 3696 3696 9 33636 96 3 36 3 96 3 3 3 3 3636 3 36 36 3 36 3 36 36 3 30 3636 96 36 36 36 I 36 36 36 96 36 36 96 3 3 36 3696 9636 3696 3 e 36 9 3 36 96 3 36 396 %)

var
Dirlnfo : SearchRec:
Line .

Fosition : integer;

begin

LowVideo;
GntoXY(1,FromLine’; ClrEol;
Lirne:=FromLine; Position:=1;
FindFirst (MatchPtrn,337,Dirlnfol;
if DosError<:0 then

writelni'### ND FILES FOUND #¥*')
els2
while (DosError=0) and {(Line < Toline) do
begin

GotoXY (Position,Line):

if Dirinfo.Attr=#10 then HighVideo;

write(Dirlnto.Named

LowVideo;

Fosition:=Fpsition+16;

if Position=&S then

begin

Line:=Line+1:
FPositioni=1;

end;

FindNext(Dirlnfo);
end;
NormVideo;

end;

t# This portion reprinted from "Turbo FPascal 4.0 unit to read a
directory and display it" by Dipl. Phys. Christian Boettger, with
the permiszicn of Ir. Alexander Verbraechk, the original author.

*EFEFREERRF A2 REER>¥y End Verbraechk Excerpt FErdidieixfiidsiiirxs)

-
[]
[2¥]

(HERNEREREREEEXEREXEXE Start Boettger Excerpt 3963636 3 36 3696 3 36 36 3 36 34 36 96 3349 3)

procedure ShowDir (MatchFtrn : string; FromLine, TolLine : integer;
var error : integer);
{39 R 30060630006 30009 0 930060630400 0636 36 03036 3 06 30 3 0 S I NI SRR H
Christian Roettger phone: (+49) (0)531/391-5113
mail: Institut fuer Metallphysik und Nukleare Festkoerperphysil,
(room -167/-168), Technische Universitaet Braunschweig,
Mendel ssohnstrasse 3, D-3300 Braunschweig, land
Bundesrepublik Deutschland (West Germany / FRG / RFA)
EARN: I2010506E@DESTUL.BITNET InterNet: boettger@julian.uwo.CA
UseNet: boettger@julian.UUCF
UUCP / UseNet:
{whereever) 'uunet {watmath! julian'!boettger
(whereever) 'uunet 'boettger@hydra.uwo.CA
(whereever) 'vunet 'mcvar 'unido!'i2010506@DESTUL . BEITNET
HREFRERRERFERE R RS F IR RN ERF R RERFRARREER R AR ERE R R R R RRREERH)
var DirlInfo : SearchRec;
start,i,
line,ml : integer:

procedure WriteEntry(RirlInfo : SearchRec: line : integer);
var DT : DateTime;

attribut : string;

procedure GethAttribut (attr : byte; var attribut : string);

begin
case attr of
ReadOnly : attribut := "ReadOnly’:
Hidden : attribut := ’'Hidden';
SysFile : attribut := ’'SysFile’:
VolumelD ¢ attribut := "VolumelD';
Directory : attribut := ‘Directory’;
Archive : attribut := ‘Archive’:
AnyFile : attribut 1= ‘AnyFile’:
else begin
Str{attr,attribut);
attribut := "Attr = ° + attribut;
end;s
end;
end;

(# FReprinted from "Turbo Fascal 4.0 unit to read a directory and
display 1t" by Dipl. Phys. Christian Boettger, by permission of the
author,

HEFEFFFERARER XA RS #2¥ %% Continue Roettger Encerpt SE¥srdirriiaasiaiess)

,.
ot
0

(FXEXEEREXREEXRERXRXEE COntinue Boettger EXCerpt #EEksididiiiisisins)

begin (*of WriteEntry*)
with Dirlnfo do
begin

UnPackTime(Time,dt);

GetAttribut (attr,attribut);

GotoXY(1,line); ClrEol;

IF attr = Directory THEN HighVideo;

write (Name);

GoToXY (13, line);

IF attr = Directory THEN
Write (° {DIR:>")

ELSE Write (size : B)3

GotoXy (24, line);

{Write (Name:12, ' ’,Size:8,°’ V3 3
with dt do
begin

.

write(day:2, -",month:2, '-",year:4,"
write(hour:2, s ",min:2,': ",sec:2,’
end;
writeln(’ ‘,attribut);
LowVideo;
end;
end; (#0f WriteEntry#*)

begir {(#¥of ShowDir*)
Ml := TJoLine - FromlLine;
start 1= WhereY+!:
FindFirst (MatchFPtrn, AnyFile, Dirlnfo);
case DOSError of
£ 3 begin
WriteEntry(Dirlnfo,start);
line := start;
while DOSError=0 do
begin
FindNext (Dirinfo);
Inc(line);
if line:*Ml then begin
StandBy}
line := start;
ClrScr;
end;

T

Vi

if DosError=0 then WritekEntry(Dirlnfo,line)

(# Reprinted from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Phys. Christian BRoettger, by permission of the

auther-.

EEEFREEAFFRARF R XXX X%% Continue Boettger Evcerpt SR iyisdariadirssss’

160

(#exxxRErnnereneeinxrs Continue Boettger Excerpt #¥ErSreieiisiidiiiss)

else begin
GotoXY(l,line);
ClrEol;
writeln;
CirEol;

writeln (Error_Code [DOSError 1, i1°)3

writeln;
ClrEol;
GotoXY ({1 ,WhereY);
end;
end;
error :=0;
end;
2 : begin
GotoXY{1l,start):

writeln(Error_Code [DOSError 1,° 117);
writeln('Directory not foundii’);

errar := DDSError;
end;
i8 : begin
GotoXY(1l,start);

writeln(Error_Code [DOSError 1, 11');:
writeln(
‘No Entries in directory that match pattern i °);

error ;= DOSERROR;
ends
el=ze begin
BotoXyY({l,start});

writeln(Error_Code [DOSError 1, 11}

error := DOSError;
end;
enc:
end; (%#0f ShowDir#+}

(» Reprinted from "Turbo Fascal 4.0 unit to read a directory and
display it" by Dipl. Phys. Christian Boettger, by permission of the

author.
FREXEEFRERRESRAEREX%ER%E ENn Roettger Excerpt

161

HEEFREREFERREREERFEN)

L)

3
4

APPENDIX R

SOURCE LISTING FOR UNIT ERRORCOD

9696 363696 36 96 96 96 36 96 6 96 36 26 9696 96 36 J696 36 36 96 36 36 36 96 36 3 36 336 36 36 936 36 36 36 36 36 36 3 36 36 36 96 36 36 636 96 3 3636 3 36 3696 636 36 36 3636 3%)

(%%¥%

(#%#%¥ This unit maps MS~DOS error codes returned by the
(#%##% gperating system to strings to give the operator a

ERRORCQD. PAS

(#%x% human readable response.

(%%

(**%%x Reference:

(%%
(€ XX 33
{X%x%

M5-D0OS Version 3 Programmer ‘s Utility Pack

MS-DOS Reference Guide Volume 1

1986, pp. 4.86-4.88, 4.254-4,237.

(x*xx% Developed by Nelson Ard

(%%

(#x#¥ | ast modification Sep 89
e T T T TR T Y Py T I T P YT T T R T Y e Y e 2 D)

UNIT ErvrorCod;

CONET Error_Code
stringl40]

ARRAY [C,.B88] OF

{'No errors’,
“Invalid function code’,
‘File not found’,
‘"Fath not found’,
‘No file handles left’,
"Access denied’,
“Invalid handle’,

"Memory control blocks destroyed’,

‘Insufficient memory’,

"Invalid memory block address’,
‘Invalid environment ',

‘Invalid format’,

‘Invalid access code’,

‘“Invalid data’,

‘RESERVED error code’,

‘Invalid drive’,

‘Attempt to remove the current directory’,

‘Not same device’,

‘No more files’,

‘Disk 1s write-protected’,
‘Bad disk unit’,

162

ERHE)
HEER)
EHRE)
XHRE)
XHNR)
#HNE)
ERRE)
YY)
EXXR)
RERR)
ERER)
XHRE)

‘Drive not ready’,

‘Invalid disk command’,

‘CRC error’,

‘Invalid length (disk operation)’,
‘Seek error’,

‘Not an MS5-D0OS disk’,
‘Sector not found’,
‘Out of paper’,
‘Write fault’,

‘Read fault’,
‘General failure’,
‘Sharing violation’,
‘Lock violation',
‘Wrong disk’,

‘FCE unavailable’,
‘RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’
"RESERVED error code’
'RESERVED error code’
‘RESERVEL error code’
"RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’
‘RESERVED error code’,

‘Networt reguest not supparted’,
‘Remcte computer not listening’,
‘Duplicate name or network’,
‘Networt name not found’,

‘Networs busy”’,

‘Network device no longer exists’,
‘Net BIOS command limit exceeded’,
‘Networt adapter hardware error’.
‘Incorrect response from network’,
"Unexperted networlk error’,
‘Incompatible remote adapt’,
‘Print queue full’,

‘Cueve not full ',

‘Not enough space for print file’,
‘Network name was deleted’,
‘Access denied’,

"Networt device type incorrect’,
‘Networt name not found ',

‘Networlk mame limit exceeded’,
‘Net BIOS session time exceeded’,
‘Tempcrarily paused’,

‘Network reques* not accepted’,

N N R T T |

CONST Error_Clazs : ARRAY [1..12] OF stringl401

Fecommended Error_Action t ARRAY [1..7]1 OF Stringl40]
{ ‘"Retry, then prompt user’,

Error_i

‘Print or
‘RESERVED
‘RESERVED
"RESERVED
'RESERVED
‘RESERVED
‘RESERVED
‘RESERVED

disk redirection is paused’,

error
errar
error
error
error
error
error

‘File exits’,
‘Duplicate File
‘Cannot make’,

“Interrupt 24 failure’,

code’,
code’,
code’,
code’,
code’,
code’,
code’,

Control Rlock’,

‘Out of structures’,
‘Already assigned’,
‘Invalid password’,
‘Invalid parameter’,
‘Net write fault’);

{'0ut of a resource’,
‘Temporary situation’,
‘Fermission problem’,

‘Internal error in system software’,

‘Hardware failure’,

‘Cystem software failure’,

‘Appiicetion program error’,

‘File or item not found’,

‘File or item of invalid format’,
‘Tile or item interlocked’,
‘Media faillure - storage medium’,

‘Unkrown error ‘)i

"Retry after a pause’,

‘Reprompt user to reenter’,
‘Terminate with clean up’',
‘“erminate immediately’,

‘Observe only’,

‘Retry after correcting fault’);

ARRAY [1..5] OF Stringf40]
C'Unknown ',

‘Random Access block device’,

‘Related to a network’,
‘Related to serial access device’,

‘Related to RAM) ;

164

PROCEDURE Extended_Error_Code (VAR
VAR
VAR

{ Following an error code returned
1/0 function, this may be called
error 3>

IMPLEMENTATION

Var index : integer;

PROCEDURE Extended_Error_Code (VAR

VAR
VAR
Var Regs : Registers;
BEGIN
Regs.AH := $59;
Regs.BX 1= O3

Intr(£21, Regs);
Errcr_Code := Regs.AX;

Error _Clase := Regs.BH;
Error_Locus := Regs.CH;
END;
BEGIN
ENL.

Error_Code : INTEGER;
Error_Class : Byte;
Error_Locus : Byte);

by an MS-DOS function call or
for amplification on the

Error_Code : INTEGER;
Error_Class : Byte;
Error_Locus : Byte);

165

-

APPENDIX S

SOURCE LISTING FOR UNIT GENERAL

?

R Ty I I I IR Ry Y I I I Y]
(%% GENERAL . PAS *#)
{(## This is a library of general purpose routines to augment the #*¥)

(¥* features of Turbo Fascal 4.0. This UNIT requires the standard##)
(#+ units CRT and DOS supplied with the Turbo Fascal 4.0 compiler #¥)
(#¥% in order to compile. *¥)
(%% *%)
(#% Reference: Edwards, C. C., Advanced Techniques in **)
{®% Turbo Fascal, pp. 66 - 73, Sybex, Inc., 1987 *¥)
(% *%)
{(#% Mogified from a Turbo Fascal 2.0 include file to a *%)
{(¥* Turbo Fascal 4.0 UNIT by Nelson Ard *¥%)
(#% *%)
(** Last Modification: Sep 89 *#)

T T I s IR I T TP T I I TP IIE TSI FE ST TILTTSTTLTTITET LT LT T EL T L Y
[HXFFEXEFXRREXERRXRXHE0%% Start Edwards Excerpt #EEEREEXERREREEEENR)

UNIT Genereal:

Long_String = Stringl2353;
He: Type = Stringl21;

Cursor_Type=(Cursor_Small ,Cursor_lLarge,Cursor_Invisible);

{* Reprinted with some modification from Advanced Technigquees in Turbo
Fazcal bv Charles Edwards, by permissior of Sybex, Inc. Copyright
19287 Sybes, Inz. All rights reserved.

sesyrneseraxrearirrtnsr Corntinue Edwards Eucerpt #XExrssrtsrdirdrsiss)

166

(HRERAEFRXXXRREXXER%% (Continue Edwards E){Cerpt 369636 36 3 36 3 3 3 3 36 3 3 3 X XX)

Frocedure FillWord(Var V: Num,VYalue:integer);

(#This procedure is similar to the Turbo procedure FillChar, except
that it fills the variable with a 16 bit word value rather than an
8 bit character.*)

Procedure Exchange(Var S5,D; L:Integer);
. (#This procedure is a fast machine languge routine to exchange the
contente of two variables, No test is made concerning the
compatibility of the variables. That is left to the programmer.#)

Frocedure Eeep (Freg:Integer);
(#This procedure produces a tone for 1/4 second*)

Funztion Max (X,Y:Irteger):Integer;
{¥Mz: returns the larger of two integers#)

Functior Min(¥,Y:Integer):Intecer:

{#Ma- returns the smaller of two integers#*)

Frozedure Cursor_Size(Size:Curso-_Type: Mono:Boolean);

{#T-1z procedure changes the cursor into either an underline or a
block cursor

1ze = Cursor_Small createcs zn vnderlinme cursor
Cursor_Large creates b1z cursor
Cursor _Invisible creates an invicible cursor

]

a
T

[

A

w

m

Morc = True 4or a monochrome screen
Faiee for & colorsgraphice card

-
£
Y
I
Q
]

RIS

the time in the form HH:MM:SE uM»)

(# Feprinted with some mocdificetion from Advanced Techniques 1n Turbo
Fascal by Charles Edwards, by permiscion of Sybe», Inc. Copvright

. i%E7 Syhe , Inz. All rightsz recevvec.
Prrrriprrrrsnrerrrrdr [ontinue Edwards E cerpt 2245535032 0a2dadbdids)

IMFLEMENTATION

(XEEEEXEXXEXFAERX¥%* Continue Edwards Excerpt 22T 22T IS L D]

Procedure FillWord{(Var V: Num,Value:Integer);
(#This procedure is similar to the Turbo procedure FillChar, except

that it fills the variable with a 16 bit word value rather than an

8 bit character.

Input: V: The variable which is to be filled
Num: The rumber of words to full with the value
Value: The 16 bit word to be stored in V

*)
Begin
Inline($C4/$EE/V (#*LES DI,VIEFI*)
/$8B/$8E/Num (#MOV CX,[Num+BP]#%)
/¥BE/¥B6/Value (*MOV AX,[Value+BF1*)
/$FC (%CLD#*)
/§F2/¥ARB (#REFNZ STOSW#?

Vs

A

End; (%of FillWord#)

Frocedure Exchange{Var S,D; L:Integer):

(#This procedure 15 a fast machine languge routine to exchange the
contents of two variables. No test is made concerning the
compatibility of the variables. That is left to the programmer,

Input: §,D0: The variablez tc be exchanged
L: The number of bvtes to exchange

*)

Begin

Irline(F1iE (#FUSH DS#)
/¥CS/¥BE/S ¢#.DS SI,SC[EFI™)
/$C4/%RE/D (#LES DI,DLEFI*)
/¥8E/%BE/L {(#MOV CX,[L+BF1%)
/3FC (%CLD#%)
/EZ2&/ECARIFCS (x: MOV AL,ES:[DIIw)
/EBE/F0A (*EXCH [SIJ,AL%*)
g 293 {*INC SI#)
/ERA (%STOSE*)
/EE2/FF7 (#LDOF LL*)
SELE (%FOF D4#)

)3
End; (#cF Erchange*)

i®* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybe:, Inc. Copyright

1987 Syte, Irnc. All righkts recerved.

APFEREFRRFAEF>rrrRr+s (ontinue Edwards Excerpt #axrdidrdtidiesdeidrs)

168

(HEEEXREFRRRRERREH22% Continue Edwards Excerpt #eidsd ki e®iiestiis)
Frocedure Beep (Freg:Integer);
(#This procedure produces a tone for 1/4 second#*)

Regin

NoSound; (#Reset flag#)

Sound(Freq);

Delay (250);

Nosound;

Ernd: (xof Beep#*)

Function Max (X,Y:Integer):Integer;
{#Max returns the larger of two integers#)
Begin
If X < Y then
Maxs:=Y
else
Mans=X3
End; (¥of Maux)

Function Min(X,Y:Integer):Integer;
(¥Max returns the smaller of two integers#)
Begin
I+ X < Y then
Min:=
else
Min:=Y;
End; (*¥of Minx)

Procedure Cursor_Size(Size:Cursor_Type; Mono:Boolean);
{(#This pracedure changes the cursor into either an underline or
& block cursor

Cursor_Small creates an underline cursor
Cursor_Large creates a block cursor
Cursor _Invisible createcs an invisible cursor

Input: Size

Monz = True for & monochrome screen
Falss for a color/graphics card
*)
Conzt
Cursor _Values:fArray [0..2] of Integer = ($0607,%0007 ,$0C0D,$000D)
Var Regs:Registers;
Begin
Regs.AX:=$0100;
I¥ Size = Cursor_Invisible then
Regs.CX:=$2607

{* FReprinted with some modification from Advanced Techniques in Turbo
Fascal by Charles Edwards, by permission of Sybex, Inc. Copyright
1987 Svbe:, Inc., A1l righte reserved.

EERFFAFRESEAARFEFRE> Continue Edwards Excerpt #x#isiXeisriridspesss)

169

(ki xsxkrenekkxxk®e® Continue Edwards E)(cer'pt 936 96 9 96 36 396 36 96 36 963696 369 96 3 3 3¢)

else
Regs.CX:=Cursor_Values[Drd(Mono) #2+0rd(Size) 1;

Intr ($10,Reqgs)

End; (%of Cursor_Size*)

Function Get_Time:Long_String;
{(#This procedure returns the time in the form HH:MM:GS xM%)
Var Regs:Registers;
Hour (Min,Sec,M:5tringl2];
I:Byte;
Begin
Regs.AH: =$2C;
MSDos (Regs)
tr(Regs.CL:2,Min);
Str (Regs.DH:2,5ec);
For I:=1 to 2 do

Begin
I+ Minfll=" ' then MinlIl:="0";
If SeclIl=" ° then SeclIl:="0";
End;:

Cace Regs.CH of
O: I:=123

12..23; l:=Regs.CH-12;
elge I:=Regs.CH:
Enc; (* of case#*)
Eer{1:2,Hourd
If Hour{1l=" ' then Hourfll:='0";
¥ Regs.CH ¢ 12 then
M:="AM"
else
Mi="FM":
Get_Time:=Hour+': +Min+ : "+Sec+ ’'+M;
End: (#0f Get_Time¥)

m

IN

m
Z I
[IRE)]

(» FReprinted with some modification from Advanced Techniques in Turbo

Fascal by Charles Edwards, by permission of Sybex, Inc. Copy-ight

1987 Svbe:, Inc. All rights reserved. .
FREEFFREFEEFFEFERER¥> (Continue Edwards Evcerct #rsaarsiesxiisFiirass)

'~

b s
P

APPENDIX T

SOURCE LISTING FOR UNIT MISCPACK

{362 3636 36 36 3 36 36 336 3 3096 36 9 36 3636 3696 36 36 36 96 3 36 36 3636 36 3 36 363 3 36 36 I3 363 396 36 96 36 96 3 T 3 36 I 3 96 36 96 I 36 36 36 9 3 9 36 9 %)

(%%%* MISCPACK.PAS *%%)
(##%x% Thie contains common data structure declarations for FHRE)
(#%#%% several units and a couple of utility routines. FHEX)
(¥%%x% Derived from the include file of the same name in the #RRN)
(#%%x reference. HEER)
(%% %% 2113
(¥##% Reference: Swan, Turbo Pascal Files, 1987, pp. 14 - 26 *%x¥)
(#*%% Developed by Nelson Ard *EEX)
{#%X FH¥*%)
(#%%% Last modification Sep 89 *HXR)

(33696 3636 30 36 35 36 36 36 3 36 90 36 96 36 96 36 36 96 3636 3636 36 36 36 36 36 36 9 3636 30363 36 36 36 3690 3636 36 36 36 3 30 96 90 396 36 3 36 36 9 3 K R KN K%)

UNIT Miscpack;

Y e e e

INTERFACE

coneT

USES no other packages ¥
1% Jul B85 - Addec stringlZE, response_type I
19 Jul B9 - Added buffer for xmodm I

11 Sep 8% - deleted VallHex 7

3,

(HFXREFXEXRXFARXRERAXRE Start Swan Excerpt #EREXXEFEREREREXERELRIEEE)
{ String Lengths J

FathLen = &5;
Filelen = 12;
Namelen = &;

ExtnlLen = Ij
DriveLen = 2;

-

NuliStr
lanb

Typing helpers >

B N e Tk B e Bk

Y

r
L
s
AN

(# Reprinted with
By Tom Swan, by permission of Howard W. Sams and Company. Copyright
1967 Howarcd W. Sams and Company. All rights reserved.

P EERRFERFFEFEFRRRXEFREX COrtinue Swan ExcCerpt @ rixdreldertieiriess)

Maximum complete path name length + 1 3
Maximum f1le name length (with extension) 7
Maximum file name length (without extension) i
Maximum file extension length }

Maximum drive letter string 3

Nc blank between the quotes >
A single blank character

some modification from Mastering Turbo Fascal Files

ra
~
—

(FEEFERFHRXHXERRERRHHREE COntinue Swan Excerpt #EEeesrdiedd®iriesises)

b}

{ Keyboard control code translations

KeyRight= “D; { Right arrow I

teyHome = “W3 { Home 3

KeyUp = “E; { Up arrow }

KeyPglp = *R; { Pgup 3

KeyLeft = "5; { Leftt arrow

EeyEnd = "7 { End 3

keyDown = ~X; { Down arrow 7

KeyFgDhn = ~C; { PgDn b

teylns = "V; { Ins 7

KeyDel = “Gj { Del b

TYPE

{ File and path name strings

FathString = Stringl PathiLen J: { C:\TURBO\TEST.FAS X
FileString = Stringl FileLen J; { TEST.FAS 3
NameString = Stringl NameLen J; { TEST >
ExtnString = Stringl ExtnLen 13 { FAS i
DriveString = Stringl DriveLen 1; { C: ¥

in

)
4

Gther string

v

Hex St = Stringl 4 13 { 4 - digit hex strings (FC9A)
Stred = Stringl 80 13 { BO-character strings 7
stringiZ8& = Stringl 128 1;

3,

iMiscellaneous types 3

-

Fointer to memory bytes 2

N

Character sets >

FPointer = “Ryte;
CharSet SET OF CHAR;

o

4

Added for Spawn, Intrinsic Exec calls I

-~

Response_type = (strng, file_type, nothing);

3,

{ Added for Farser, »modm >

CONST
Maxblock = 1024;

{# Reprinted with some modification from Mastering Turbo Fascal Files

By Tom Swan, by permission of Howard W. Sams and Company. Copyright

19687 Howard W. Sams and Company. All righte reserved. .
FEERXRRFFFERFRFEREERRERR CoOntinue Swan Excerpt FEErrdsdsiiitssiiriesrs)

(963363 33 % % % H XX ¥ XX %% % ¥ %% Continue Swan E):Cerpt FE36 9636 30 96 363 366 9 3 3 96 3 336 3 %)

TYFE
Buffer = ARRAY [1..Maxblockl OF CHAR;

PROCEDURE BumpStrUp ¢ VAR s : Strina);
{ Convert (bump) all chars in string s to uppercase J
IMPLEMENTATION
FROCEDURE BumpStrUp (VAR s : String):
{ Convert (bump) all chars in string s to uppercase }
VAR

i : INTEGER; <{String index I
BEGIN

FOR i := 1 to Lermgth(=) DO

STil := UpCase(€lil)}

END; { BumpStrUp >

BEGIN {Unit initializaton

ENTY, { UNIT Miscpack 3

(# Reprirted with some modification from Mastering Turbo Fascal Files
By Tom Swan, by permiscsion of Howard W. Sams and Company. Copyright
1967 Howard W. Sams and Compeny. Al rights reservec.

FPEFERPFERFRRERFEFFRFRFFEPY Fnd Swan Eincerpt #EFarsrsiasaiiieiiess)

APPENDIX U

SOURCE LISTING FOR UNIT PARSER

¥

(3369636 30 36 0 36 90 96 3 36 96 96 3696 36 3 696 3 36 96 36 96 30 36 363690 36 36 96036 36 2 36 36 36 3636 3636 36 36 36 3636 36 3 36 36 36 9696 96 36 36 36 36 3636 96 3 9 9 %)

(%nx% PARSER. PAS *HRN)
(#x%% This is the unit that executes all commands for the HEE®)
(*x%% Slave computer. $ 2323
{%%%% ERER)
(#H%% ¥HHH)
(#x%% References: Hall, W.V., "When Turbo Isn’'t Enough," in *HHX)
(*%¥% Shammas, N.C., The Turbo Pascal Toolbook, *HHE®)
(%3%%% cp. 14S - 146, M & T Fublishing, Inc., 1986.%%%x)
(H%®n ERRE)
{#ERE Mefford, M.J., "Running Programs Fainlessly #%x%)
(¥%3% FC Magazine, v. 7, 14 February, 1988. *EER)
(¥ *RER)
(##%¥ Developed by Nelson Ard *RxH)
€22 2] X% HH%)
(##%% Last modification Sep 89 FHEF)

{FXHFREEREFRIETE R E I 5 39369 369 5 6 I3 93096 3969 36 96 36 96 96 36 36 06 36 96 36 3 36 36 36 9 H JE 36 3 3)

UNIT Farser;

{ 8 Nov 88 3
{ £ Jure B89 - changed sets to constants:
{ 9 June 8% -added

argv, argc functions
adiucsted parsename to correctly parse long filenames’
19 Jun 8% - added buf_to_string, string_to_bufl
Z2¢ Jun 89 ~ added Recsolve_command to prepare for EXEC call 2
12 Jul 29 - moved Matck_command, internal command constructs to spawn,
sdded response construct to parser_main
{ 4 Aug B9 - deleted Intrincic from USES statement

-

'

INTERFACE

USES MISCFACH, Erro-CoZ, Spawn, Dosi

PROCEDURE Farczer mair | Command_s : stringll8:
VAR Response : StringllS8:
VAR Restype : Response_type;
VAR Error_msg : Stringl28:

VAR Errtype Response_type;
VAR Fraompt : Stringl28);

174

{ This procedure parses an M5-DOS command and executes it locally
Input: Command_s is the command to be executed with path

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is & simulated command line prompt after pragram

execution
IMPLEMENTATION
TYPE
argtype = (opt, other)
arg_rec = RECDRD
arg_type : argtype;
arg_length : byte;
arg_index : bvte;
END;
argarray = ARRAY [C..91 OF arg_rec;

SETOFCHAR = set of char;

L]

command_buffer ARRAY [1..12]1 DF char;
CONET
SFACE
TAE
COMMA
SEMICOLON
COLON
FLUS
MINUS
SLASH
BACHSLASH
DCT
STAR
NUL
TILDE

e H :

(T T TR TR T
P T
- .~ - -. o '~ P " . l‘ r .\ - I‘ - -‘ . l~

2B k.

(UNE LI N | N (I [A 1|

-

Fath_or_drive : SETOFCHAR
Node _or_drive : SETOFCHAR

[COLON, BACESLASH 1;
[COLON 1;
€

nn W oun

arg_separator : SETOFCHAR SFACE, COMMA, SEMICOLON, PLUS, MINUS 1:
whitespace : SETOFCHAR [SPACE, TAE 1I1:

opticr : SETOFCHAR [SLASr 1:

NuilString : FathString = '

VAR
arg_array : argarray;
arg_count : byte;
Command_line : FathString;
index : byte
count : byte;
(# This variable for use #* only ¥¥ by argv() #)

arg_string : stringi28;
FPRODCEDURE Farse (Command : stringl28);

{ Used by Farser_Main to count and isolate the command line
parameters. This procedure loads arac and argv

VAR
index : byte;

BEGIN
arg_string := Command; {save a copy of the command’
FOR arg_count := O T0O 9 DO
WITH Arg_array [arg_count 1 DO BEGIN
arg_type := QOTHER;
arg_lerigth = 03
arg_index := 04
ERND;
1ndex = 1
arg_count = 03
REFEAT
WHILE (index <« Length (Command))
AND (Char (Command [index 1) IN whitespace) DO
INC (inde:);
WITH arg_array [arg_count J DO BEGIN
If inde: <= Length { Command) THEN
CASE Command [index] OF
T&S, SPACE : BEGIN
END;

Ho-

SLASH i1 IF index < length (Command) THEN
BEGIN
(#INC (index)3;%)
arg_length 1= 2; (%i%)
= index;

arg_index @
arg_type 1= opt;
INC (index)
INC (index);
INC { arg_count);
END;
1764

ELSE BEGIN
arg_index := index;
arg_type := other;
arg_length := 1;
INC (index };
WHILE (index <= Length (Command)) AND

NOT (Char (Command [index 1) IN whitespace)

AND NOT (Char (Command [index 1) IN option
DO BEGIN
INC (arg_length)
INC (index);
END;
INC (arg_count)3
END; {BEGIN>
END {CASE:
END { WITH 3
UNTIL index »=
END: {Farse’

length (Command);

FUNCTION argc : byte;

{ Returns a count of the number of arguements on the command

S

line 3

EEGIN
arge = arg_count:
END;
FUNCTIOM argv (arg_count : byte) : stringllB;

{ Retwrns the arg_court 'th arguement from the command

3,

line >

VAR
index : byte;
temp : stringll8;

BEGIN
temp = Nullstring;
WITH arg_array [arg_count] DO
FOR indew := arg_index 70 (arg_index + arg_length - 1) DO
temp := temp + arg_string [index 1
argv := temp:

{HERHERERRXXEREXRREXXRNXEXERE Start Hall Excerpt #esesiiaeddateiiniis)

FROCEDURE FarseName (inName : PathString; VAR nameSpec : NameString;
VAR extnSpec : ExtnString;
VAR fylespec : Filestring;
VAR pathSpec : PathString;
VAR driveSpec : DriveString;

VAR nodeSpec NameString);
{ Breaks down a filespec into its component parts for Parser_Main,
Resolve_command. From the Hall reference. 3}

VAR
Count : Byte;
DatFos : EByte;
StarFes : Byte;
inde:x @ integer;
filespec : pathstring:;

BREGIN
Count := Length (InName);
{$V-3
MiscFack, BumpStriUp(InName);
{EV+S

IF {(InNamellount] IN Fath_or_drive) THEN
{ do nothing >
ELSE BEGIN
REFEART
Counmt 1= PRED(Count);
UNTIL (Count = 0) OR (InNamelCountl IN Path_or_drive) ;i
END;

{Isolate Filename’
{ Copy (Source, Startpos , No of Char) 3
fileSpec 1= Copy (InName, Count + 1, LENGTH (InName) - Count);
DELETE (InName, Count + 1, LENGTH{InName) - Count): {Chop tail of+}
IF (Count > 2) THEN

IF (InNameiCountl <3 “:*) THEN
REFEAT
Count := FRED(Count):
UNTIL (InNamelCount] IN Node_or _Drive) OR (Count = 0);

(# The library FarseName appears in The Turbo Fascal Toolbcok by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M % T Books 1-BOC-533-47272., Minor modifications by Nelson
Ard,

FFEFFRPALREFF R EEXEESIE*%F (Continue Hall Excerpt FHERERREEEEEFHEEREEERNR)

(ERERRRXRRRERRRRFXERH#%%% COntinue Hall Excerpt #HEmresliiiidedieiiis)

CASE Count OF
0 : pathSpec := InName;
1 : { Syntax Error }j

ELSE BEGIN
pathSpec := Copy (InName, Count + 1, LENGTH (InName) - Count);

{Chop tail off:
DELETE (InName, Count + 1, LENGTH(InName) - Count};

CASE InName[PRED(Count)l OF

COLON : BREGIN
{Chop tail of+?
DE_ETE (InName, Length (InName) - 1, 2);
nodeSpec := InName;
END:

~ m.

REGIN
driveSpec := InNamelFRED(Count)] + ":';
DELETE (InName, Count - 1, 2); {Chop tail off:
Count = Length(InName);
IF (Count » 2} AND (FOS('::°, InName) = Count - 1)
THEN IF LENGTH(InName) > 10 THEN
nodeSpec := Copy (InName, 1, &)
ELSE nodeSpec := Copy (InName, 1,
LENGTH (InName} - 2)
LSE { Syntax error in node part
IF Count 7> O THEN 3
END:

D
rd ot
e

A,

ELSE { Syntaux Error, drive nct alpha character I;

END; {Casel

(Adjust filename’
DotFoe := POS(DOT, fileSpec):
IF DotFoz <> O THEN BEGIN
extnSpec := COFY(fileSpec, DotFos + 1, T)i

f# The library FarseName appears in The Turbo Fascal Toolbook by Namir
€. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-800-533-4372. Minor modifications by Nelson
Ard,

REFERERCEERFRF RS ERR2RF Continue Hall Excerpt S#ersdedndfe¥idXsisssrsy)

175

(HHHEERXFHREXXERXAERXEXE® Continue Hall EXCEFpt 3636 36 96 96 36 969 36 9696 96 36 96 96 96 96 % 9 6 %)

DELETE (fileSpec, DotPos, (LENGTH(fileSpec) - DotPos)+1);
END
ELSE
extnSpec = " ';
IF LENGTH(fileSpec) > 8 THEN
DELETE(fileSpec, 9, LENGTH(fileSpec)-8);
StarFos :1= POS(STAR, fileSpec);
IF StarFos < 0 THEN BEGIN
DELCTE (fileSpec, StarPos, (LENGTH{(fileSpec)-StarPos)+1);
FOR Count := LENGTH(fileSpec) TO 7 DO
fileSpec:= fileSpec + "7';
END;
Namespec := filespec;
StarFos := POS (S5TAR, extnSpec);
IF StarPos < O THEN BEGIN
DELETE (extnSpec, StarFos, (LENGTH(fileSpec)-StarPos)+1);
FOR Count := LENGTH(extnSpec) TO 2 DO
extnSpec := extnSpec + '?':
END:
F NOT (extnspec = Nullstring) THEN
fvlespec := Namespec + DOT + extnspec
ELEE fylespec := Namespec;
END;

(# The library FarseName appears in The Turbo Fascal Toolbook by Nami-
C. Shammas ‘ed.} and hacs been reprinted with the permission of the
publisher M 2 T Books 1-800-333-427Z2. Minor modifications by Nelson
Ard.

FEFRRFEAFFRR RS x e x¥4s2% End Hall Excerpt #¥EErdirfriisieiss)

-

Iv*E { used by Resclve_Command and Farser Main 3

Type_of_file = (BAT_File, COM_File, EXE_File, Directoree, Other_File,
Fathname)3

VAR { iiatialized by Farser_Main for resclve_command :
pathSpec : FathString:
fileSpec : fileString;
nodeSpec,
nameSpec : NameString;
extnSpec : Ex tnS*rlnc.
driveSpez : DriveString;

180

FUNCTION Resolve_command (VAR arguement : PathString) : Type_of_file;

{ The MS-D0OS Exec function needs a complete file specification (drive,
path and filename including extension to run a child process.
Resolve_command examines the first arguement in an MS-DOS command
line, arguement, and fills ocut the complete path information if
needed, then uses this path to conduct a file search for the
exact filename. The completed file specification is returned to
the caller along with the type (COM, EXE, BAT, or path) for
execution or directory change action. The building blocks
needed to construct the complete file specification have been
placed in the variable immediately above by ParseName. The
deterministic algorithm for detecting the correct executable file is
trom (Mefford, 1988, p. 227).

Input: arguement, the command file to be searched for

Output: arguement, adjusted to specify a complete path
The function returns the type of file as an enumerated type

VAR
Dirlrnfo : SearchRec:
resolved,
relative_directory : boolean;
Dir : PathString;

BEGIN
resclved := FALSE;
GetDir ¢ 2, Dir)3

i lack of a leading backslash could mean a simple
reguest to log to another drive
relative_directory := { pathSpec [1 1 < BACKSLASH):
IF relative_directory AND ((Dir [11] driveSpec [1])
OR (Drivespec BLANE)) THEN
{ Fill out the complete path specification ?
arguement := Dir + BACKSLASH + arguement;

IF extnSper = NullString THEN BEGIN

{ The commend does not have a file extension, could be a
directory. Search the now complete path for a file
with the same name, in the reverse order that the
MS-DOS command processor would. Add the appropriate
extension to arguement if matched. End up with the
file with precedence to execute. =3

181

FindFirst (arguement +

.BAT ', Archive, Dirinfo);
WHILE DosError = @ DO
BEGIN

IF Dirlnfo.attr AND Archive <> O THEN BEGIN

arguement := arquement + '.BAT’;
resolve_command := BAT_File;

resalved := TRUE;

END;
FindNext (Dirlnfo);
END;
FindFirst (arguement + *.COM', Archive, Dirinfo);
WHILE DosError = O DO
REGIN

IF Dirlnfo.attr AND Archive <> O THEN BEGIN
arguement := arguement + °,COM’;
resolve_command := COM_File;
resolved := TRUE;

END;
FindNext (Dirlnfao);
END;

FindFirst (arguement +

.EXE', Archive, Dirlnfo);
WHILE DozError = 0 DO
BEGIN

IF Dirlnfo.attr AND Archive <> O THEN BEGIN
arguement := arguement +

CEXE "3
resclve_command := EXE_File;
resclved := TRUE;
ENLC;
FindNext

{Dirlnfo);

EN
ZLSE BESIN { extension not NULL, ready to execute 2
IF (extnSpec = "COM") THEN BEGIN
Resclve_command :
resolved := TRUE;
END

ELSE IF

= COM_File;

{extnSpec =

"BAT ") THEN BEGIN
Resolve_command := BAT_File;

resclved 1= TRUE;
END

ELSE IF (extnSpec = "EXE’) THEN BEGIN
Resolve_command := EXE_File;
resolved := TRUE;

END
ELSE BEGIN
Resolve_command := Other_file; { a path specification 7 >
resolved := TRUE;
END
END;

182

(*# changed this #)
IF NOT resolved THEN BEGIN
FindFirst (arguement , Directory, Dirlnfo);
WHILE DosError = 0 DO
BEGIN
IF Dirlnfo.attr AND Directory <> O THEN BREGIN
Resolve_command := Directoree;
resolved := TRUE;
END:
FindNext (DirlInfo);
END;
ENDj

IF NOT resclved THEN Resolve_command := Pathname;
END; {Resolve_Command;

PROCEDURE Parser_main Command_s string128;
VAR Response : StringlZ8:
VAR Restype Response_type;
VAR Error_msg Stringl28;
VAR Errtype Response_type;
VAR Frompt Stringl28);

)

This procedure parzes a command line similar in form to an
MS-LDZS command, and executes it if possible on the local
machine

irput; Command_s i1t the command to be executed with path

Output: Response is the output of the program
Rectype is the type of Response (string, file, nothing:
Errcr_Meg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Frompt is a simulated command line prompt after program

erecuticn
CONET NullString : String = “°%
Current_Drive : byte = O3 { used with ChDir »

VAR
—ommaerd ¢ Internal_Command:
arg_ccunt : byte;
inder @ byte;

cmdlineg,

[s

Current_Dir,

program_name : FPathString;
File_type : Type_of_File;
Batch : booleang

FROCEDURE Init_parse;

r

{ Break the command line into parameters, store the components
of the first arguement (normally the command itself) I

VAR
index : byte:

EBEGIN

Farse (command_s); { load argc, argv 3

pathspec := argvi{0):

filespec 1= Nullstring:

extnspec := Nullstring:

drivespec := NullString; {Elank; i:>

nodespac := Nullstring;

{ now break the first arguement into components J
Farsename { pathspec, NameSpec, e:tnSpec, fileSpec,

pathspec, drivespec, nodeSpec)i

END; { Init_Farss >

BEGIN
Init_Farse;
IF (Length (Drivespec) = 2) AND (argc = 1)

{ Drive change only J
THEN BEGIN
command_s := ‘CD ° + command_s;:
Init_Farze; { redo with added command 3
END;

If Match_command (FileSpec, Command) THEN BEGIN

{ command can be handled by #* this * program 3
IF argc »= 1 THEN BEGIN

cmdiine := Nullstring; { no command tail >

FCR index := 1 TO (argc - 1) DO

Cmdline := Cmdline + argv{index) + SPACE;

{ trim trailing space >

IF Cmdline [Length (Cmdline) 1 = SPACE THEN

Cmdline := Copy (Cmdline, 1, Length (Cmdline) - 1);

END;
{ process as a built in function
Frocess_intrinsic_command { Command, cmdline, Response, Restype,

Error_msg, Errtype, Frompt):
END

184

h)

ELSE BEGIN { prepare for a child process >
program_name := argv(0);
File_Type := Resolve_command (Program_Name);
CASE File_Type OF
coM File,
EXE_File,
BAT_File : BEGIN
EBatch := (File_Type = BAT_File);
cmdline := NullString;
IF argc > 1 THEN FOR index := 1 TD argc - 1 DO
Cmdline := Cmdline + SPACE + argv(index);
Run_Local (Program_name, cmdline, Response, Restype,
Error_msg, Errtype, Prompt, Batch);
end;
ELSE BEGIN { command did not parse, notify Master
Errtype := nothing;
System.GetDir (Current_Drive, Prompt);
Frompt := Frompt + ":':
Restype := =strng;
Response := 'Slave: syntax error’;
END; {ELBEZ
END: {TASE:
END:

END: {Farser mainl

o
B

i

T
LiM

ERD.

1835

{
APPENDIX V
SOURCE LISTING FOR UNIT REDIRECT
3
CHTEAE T I I T T IR TN T K KT I I NI T3 2606 2 2 32)
(*%%% REDIRECT.PAS ERER)
(xx%% This 15 the unit that accomplishes redirection of the *HEH)

(#%%x Standard Input and Output file handles normally assigned #*#%x)
(*#x% by the MS-DOS command processor to files to capture the #*¥¥¥)

(##x% gutput of a program running under the Slave computer *R%R)
(##¥% control. Variables are loaded with the file names for *ERE)
(x%%x% Jater reference. FHER)
{%xes ER¥H)
(*¥#%% Reference: Defenbaugh, G., "Farents, Children, XEFRHE)
{333 % Redirection, and Fiping with DOS Functions *HRE)
(%%>% 45H and 46H, Programmer ‘s Journal, Nov/Dec EXER)
(%% %R 1986, pp. 22-25. HEHE)
{ %% %% HHER)
(##xx TDevelcped by Nelson Ard EEER)
(X*** RRER)
{##¥% | ast modification Sep 89 ERER)

(FRAREREREEFFE SRR REFERERERRERRERRRERERE X R RN R RRRRRREREREFRRERERR)
UNIT Redirect:
% Modification history

22 Jul 89 - Chained ErrorNum variables through Close_file_Handle
call
- Flaced “wo string variables in interface section for
e:zternsl units to find filespec for the response, error
files while using standard TF file functions
4 Aug BY - Absorbed FileDecl UNIT as include file #)

INTERFACE
USES Dos, Crt, Miscpack:

FROCEDURE Restore_CRT_Assignments;

{ Optional procedure to replace the standard files Input and Output
with textfile drivers in the CRT unit for speed. In turns out that
the CRT Unit does thic on initialization, but disallows 1/0
redirection by coing sc
(Turbo Fascal Owner’'s Handbook, 1987, p. I77) 2

186

PROCEDURE Init_Redirect_Unit;

{ Required to reset 1/0 to the MS-DOS standard file handles, which
may then be redirected ¥

FUNCTION Redirect_Std_Input : boolean;
{ Redirect program input from a predefined file }
FUNCTION Redirect_Std_Dutput : boolean;
{ Redirect program output to a predefined file }

FUNCTION Redirect_Std_Error : boolean;

Y

{ Redirect program error output to a predefined file 7
FUNCTION Redirect_All_Output : boolean;

{ Redirect program output and error output tc a predefined file }
FUNCTION Restore_Std_Input : boolean;

{ Restore program input to the standard file handle 2

FUNCTION Restore_Std_Output : booleang

{ Restore program ocutput to the standard file handle >

FUMCTION Restore_Std_Error : boolean;

r

{ Restore program error output to the standard file handle :

FUNCTION Restore_All_Dutput : boolean;

r

{ Restore program output and error output to the standard file handle ?

VAR
Response_File,
Errors File : FathString:

IMPLEMENTATION

CONET {These are the predefined standard and redirected filecl
{MS-D0S predefines the following handles}
Stdln : word 03y (# File handle for Standard Input %)
StdOut word 1; (% File handle for Standard Output *)
StdErr word 3 (* File handle for Standard Error %)
StdAu word I3 (¥ File handle for Standard Auxiliary %)
StcFrn ¢ word 1 (¥ File handle for Standard Frinter *)
{Fedirectior takes place from/to these files}

B g r)

187

Std_Output_File_Temp : Stringl21] "C:\Scratch\OTPT.TMP;

Std_Input_File_Temp : Stringl21) = 'C:\Scratch\INPT.TMF’

Std_Error_File_Temp : Stringl21] = ‘C:\Scratch\Err.TMP";
CONST Make_Dir : Byte = $39;
Remove_Dir : Byte = $3A;
Change_Dir : Byte = $3B;
Create_Handle : Byte = $3C;
Open_Handle : Byte = $3D;
Close_Handle : Byte = $3E;
Read_Handle s Byte = $3F;
Write_Handle : Byte = #40;
Delete_Entry : Byte = $41;
Move_Ptr : Byte = $42;
Change_Mode : Byte = #43;
Dup_Handle : Byte = $45;
FDup_Handle : Byte = $46;
Get_Dir : Byte = £47;
Find_First_File : Byte = #%4E;
Find_Next File : Byte = #4F;

VAR
Input_File,
Error_File,
Output_File : Text;
Saved_Std_In,
Savec_Std_Dut,
Saved_Std_Err,
Recirln,
RedirOut,
RedirkErr : word:

FROCEDURE Init_Redirect_Unit:

{ Optional procedure to replace the standard files Input and Output
with textfile drivers in the CRT unit for speed. In turns out that
the CRT Unit does this on initialization, but disalliows I/0
redirection by doing so
(Turbo Fascal Owner 's Handbook, 1987, p. 377) 3

REGIN
Assign (Input, ")3
Reset { Input)3
Ascsigr Dutput, °°)3
Rewrite (Qutput)i
END:

188

FUNCTION Duplicate_Handle (Handle : word;
VAR ErrorNum : word) : word;

{ Input: Handle, a file handle to an open file
Output: The function returns a second file handle
for the same file. Both handles use the same
file pointer
ErrorNum is returned by MS-DOS:
$04 ; No free handles left
$£0& : Handle is not currently open

b
4

VAR Regs : Registers;

BEGIN
Rege.AH := Dup_Handle:
Rege.BY := Handle:
Intr ($21, Regs);
IF (Regs.Flags AND FCarry) = O THEN EREGIN
Duplicate_Handle := Regs.AX
END
ELSE BEGIN
ErrorNum := ErrorNum + Regs.AX:
Duplicate_Handle := $FF
END
ENDy

FUNZTION Close_File_Handle (Handle : word;
VAR ErrorNum : word) : Boolean;

{ Input: Handle, a file handle to an open file
Qutput: The function returns TRUE if the operation was successful
anc the file crlosed. All internal buffers are flushed.
If FALSE, an invalid handle was specitfied.
ErrorNum is returnec by MS5~-DOS:
$06 : Handle 1s not currently open

VAR Regs : Registers;

BEGIN
Regs.AH := Close_Handle:
Regs.AL 1= %03
Regs.BX := Handle;
Intr ($£21, Regs);
IF (Regs.Flags AND FCarry) = O THEN BEGIN
Close_File_Handle := TRUE
END

189

ELSE BEGIN
ErrorNum := ErrorNum + Regs.AX;
Close_File_Handle := FALSE;
END
END;

FROCEDURE Redirect_Handle (Handle, Red_Handle : word;
VAR ErrorNum : word);

{ Input: Handle, a file handle to an open file
Red_Handle a file handle to a second file
Output: The file referenced by Red_Handle is closed

Red_Handle now uses the same file pointer as
Handle, and either may be used to acces the file
ErrorNum is returned by MS-DOS:

¥04 : No free handles left

$04 ¢ Handle is not currently open

VAR Regs : Registers:

BEGIN
~egs.AH 1= FDup_Handle;
Regs.BX := Handle;
Regs.CX := Red_Handle;
Intr (2!, Regs}:
IF { Rege.Flags AND FCarry ; = 0 THEN BEGIN

noa

END
ELSE BEGIN
ErrorNum := Errorium + Regs.AX:
END
END;

FUNCTION Redirect_Std_Output : boolean;

{ Redirect program output to a predefined file
On entry, 5td0ut refers to the standard output
device driver. A copy of StdOut is saved, and

StdOut is redirected to our predefined output file

The function returns TRUE if successful

VAR ErrorNum : word;
BEGIN
ErrorNum = 03

Assign (Dutput_File, Std_Output_File_Temp);
Rewrite (OutFut_File):

190

Saved_Std_Out := Duplicate_Handle (StdOut, ErrorNum);

Redirect_Handle (TextRec(Dutput_fFile).Handle, StdOut, ErrorNum);

Redirect_Std_Output := (ErrorNum = 0)3
END:

FUNCTION Restore_Std_QOutput : boolean;

{ Restore program output to the standard file handle
On entry, StdOut refers to our predefined file
StdOut 1s rereferenced to the standard output

device driver

The function returns TRUE if successful

hS
4
VAR ErrorhNum : word;

BEGIN
ErrorNum := (3
fedirect_Handle (Saved_S5td_Out, StdOut, ErrorNum)3
IF Close_File_Handle (Saved_Std_0Out, ErrorNum) THEN

$1-3
Close (Output_File);
IF i0Result = O THEN BEGIN

Response_File := Std_Dutput _File_Temp:
Restore_Std_Qutput 1= (ErrorNum = 0
END

E.5E BEGIN
Response _File := NullStr:
Restore_Std_Dutput := FALSE:

END;

31+

END:

FUNCTION Redirect_Stc_Imput : bocleang

{ Redirect program irput from a predefined file
On ertry, Stdin refers to the standard input
device draver. A copy of Stdln is saved, and

StZIn iz redirected to our predefined input file

The function returns TRUE 1§ successful

VER ErrorNut ¢ word:
BEGIN

Errortor 1= 0Oy
Fssizm (Input_File, Std_Input_File_Temo b

19

Reset (InPut_File)i
Saved_Std_In := Duplicate_Handle (StdIn, ErrorNum);
Redirect_Handle (TextRec(Input_File).Handle, Stdlrn, ErrorNum);
Redirect_Std_Input := (ErrorNum = 0);

END;

FUNCTION Restore_Std_Input : boolean;
{ Restore program input to the standard file handle

On entry, StdIn refers to our predefined file
StdIn i3 rereterenced to the input
device driver

The function returns TRUE if successful

VAT Errarhum @ word;

BESIN
ErrorMum := O3
Fedirect_Handle (Saved_Std_In, StdIn, ErrorNum)i
{$1-:
Close { Input_File i
IF Close_File_Handle ¢ Saved_Std_In, Errorhum) THEN:
Reetare Std Imput 1= { ErrorNum = O) AND (IOResult <> 0)i
HE S

END;
FUNCTICH Recirect _EStc_Er-cr @ bocleang
{ Redirect prograrn errcr output tg a predefined file

2 standard output
dErr is saved, and

ACryr refserzs to
Yo A Copy of &

edirecztsd Lo our predefined error file
inabilit. to redirect from the MS-DOS
-

.

The function cetirns TRUE 1€ csuccessful

VAR E-rorNum @ words

BEGIN
ErrorNum := O3
fesign (Error_File, Std_Error_File_Temp)i
Rewrite ¢ Error_File !
Seved_Stc_Err := Duplicate_Handle (StdErr, ErrorNum);

192

Redirect_Handle (TextRec(Error_File).Handle, StdErr, ErrorNum);
Redirect_Std_Error := (ErrorNum = 0);
END;

FUNCTION Restore_Std_Error : boolean;
{ Restore program error output to the standard file handle

Or entry, StdErr refers to our predefined file
StdErr is rereferenced to the output
device driver

The function returns TRUE if successful

N
5

VAR ErrorNum : word:

BEGIN
ErrorNum := O;
Redirect_Handle (Saved_Std_Err, StdiErr, ErrorNum };
{¥I-2
Close (Error_File)3
IF Close_File_Handle (Saved_Std_Err, ErrorNum) THEN;
IF I0OResult = O THEN BEGIN
Errors_File := Std_Error_File_Temp:
Reztore_Std_Error := { ErrorNum = 0);
END
LSE BEGIN
Errorz_File 1= NullStr;
Restore_Std_Error := FALSE;
ENLC:
{¥I4)

END:
TUNCTION Redirect_All_Output : boolean;
{ Redirect program output and error output to a predefined fiie
On entry, StdOut refers to the standard output
device driver, A copy of StdOut ie saved, and
StdOut is redirected to our predefined output file
Or entry, StdErr refers to the standard output
device driver. G copy of StdErr iz saved, and
StdErr 15 redirected to our predefined error file
Overcomes inability to redirect from the MS5-DOS

command line

The furnctior returns TRUE if successful

197

N
VAR ErrorNum : wordj

BEGIN
ErrorNum := 03
{$I-2
Assign (Output_File, Std_Output_File_Temp);
Rewrite (OutPut_File)3
Saved_Std_0Out := Duplicate_Handle (StdOut, ErrorNum);
Saved_Std_Err := Duplicate_Handle (StdErr, ErrorNum);
Redirect_Handle (TextRec(Output_File).Handle, StdOut, ErrorNum);
Redirect_Handle (TextRec(QOutput_File).Handle, StdErr, ErrorNum);
Redirect_All _Output := (ErrorNum = O) AND (IOResult <> O);
{$]+2

END;

FUNCTION Restore_All_Dutput : boolean;

,

{ Restore program output and error output to the standard file handle

On entry, S5tdOut refers to our predefined file
StdOut is rereferenced to the standard output
device driver

Or. entry, StdErr refers to our predefined file
StdErr ics rereferenced to the output
device driver

The function returns TRUE if successful

h)
&
VAR
ErrorNum : word;

EEGIN
ErrorNum := Q3
Redirect_Handle (Saved_Std_Out, StdOut, ErrorNum);
IF Close_File_Handle (Saved_Std_Out, ErrorNum) THEN;
Redirect_Handle (Saved_Std_Err, StdErr, ErrorNum);
IF Close_File_Handle (Saved_Std_Err, ErrorNum) THEN;
{31-3
Close (Output_File);
If I0Recsult = 0 THEN BEGIN
Response_File := Std_Output_File_Temp;
Restore_All_Dutput := (ErrorNum = 0)j
END
ELSE BEGIN
Respaonse_File = NullStr;
Restore_A:l_Output := FALSE;

194

END;
{$1+]
END;

FROCEDURE Restore_CRT_Assignments;

{ Optional procedure to replace the standard files Input and Output
with textfile drivers in the CRT unit for speed. In turns out that
the CRT Unit does this on initialization, but disallows 1/0

redirection by doing so

{Turbo Pascal Owner s Handbook, 1987, p. 377)

Y
4

BEGIN
AcssignCRY
Reset
AssignCRT
Rewrite

END;

BEGIN (# nc
END.

(Input)3
(Input)
 Output)3
¢ Output);

initialization required

*)

APPENDIX W

SOURCE LISTING FOR UNIT SPAWN

2
¥

{336 336 3636 36 2 36 36 36 36 36 3636 36 36 3636 30 36 96 36 36 36 36 36 36 36 3696 36 9636 36 36 36 36 36 36 36 6 36 6 36 969636 96 36 36 36 36 36 36 36636 96 36 36 3636 3 36 2 3¢)

(% %%% SPAWN. PAS HHAH)
(#x%#% This is the unit that executes child processes under XR%R)
(x%%% MS-DOS for the Slave computer. Included is a function #HER)
(#%%% tp detect MS-DDS commands to be handled by the *H%3%)
(#%¥% program rather than by a spawned copy of Command.com. ERER)
(###% The function is placed here to prevent circular unit *HER)
(#x#% dependencies while restricting visibility to unrelated #REX)
(**%% units. *EER)
(*%x EEER)
{#¥%% FReference: Mefford, M.J., "Running Frograms Fainlessly #*%#%)
(%% %% FC Magazine, v. 7, 14 February, 1988. *EEE)
(%% % ¥ #%ER)
(#*¥%% Developed by Nelson Ard *HXR)
(®%%% EHRW)
(x%%% Last modification Sep 89 *RHE)

(EEEEFRERRERERFREREFERRE SRR R EREREFEEEFRRRER LR R R R RERERRERREE RS)
{# Modification history
8 Sep BY - added FROMFT to the list of internal commands

24 Mar 20 - deleted Find_Environment {(duplicated in Unit Support
*)

UNIT Spawn:
INTERFACE
usee Datacom, Dos, Crt, Redirect, Support, ErrorCod, Miscpack;
TYFE
internal _Command = (CD, CHDIR, COFI, DEL, DIR, ERASE, EQUIF, LS, MD,
MEDIR, PROMT, RD, REN, RENAME, RMDIR);
CONST
Command_Name : Array [Internal_Commandl OF Stringlél =
(‘'cb, ‘CHDIR', ‘COPY', 'DEL', 'DIR’,
"ERASE, ‘EBUIF‘', 'LS’, 'MD°, 'MEDIR’, 'FROMFT’,
"RD’y 'REN’, ‘RENAME’, 'RMDIR")i

Com_Fort : Stringlbl = "[COMI]’;

196

VAR
Redirection : boolean; { set by the caller in the main program to
force all command program output to file
for remcote display >

FUNCTION Match_Command (VAR FileSpec : FileString;
VAR Command : Internal_Command) : booleanj

{ Matches the command in FileSpec against the above list of commands
processed internally by this program.

Input: FileSpec is the command/file name
Output: FileSpec is adjusted to contain the complete path, if any

Command is an enumerated type for internal commands
The function returns true if a command is matched

Frocedure Run_Local ¢ FrogramName, Cmdline : string;

VAR Response : stringl128;
VAR Restype Response_type;

VAR Error_msg stringl128;

VAR Er-tyne : Response_type;

VAR Frompt : stringl128;
Batch : boolean);

{ Used to spawn & child process, program name in Command,
parametere in Command_Ta2il. PFrogram ocutput, error responses,
and a follow on command line prompt as it would appear from a
lccal command line processor are returned to the calling
program,

Irput: ProgramName is the command to be executed with path
Cmdline i=s the command tail for PFrogramName
Ratch lets Run_Local know a batch file is to be executed

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Frompt iz a simulated command line prompt after program
execution

[

PROCEDURE Process_intrinsic_command (Command : Internal_command;
Command_tail : Stringl28;

VAR Response String128;
VAR Restype Response_type;
VAR Error_msg : Stringl128;

VAR Errtype
VAR Prompt

Response_type;
Stringl128);

{ Used to execute a command normally processed internally by
command.com. The program name is found in Command,
parameters in Command_Tail. Program output, error responses,
and a follow on command line prompt as it would appear from a
local command line processor are returned to the calling
program.

Input: Command ie the command to be executed with path
Commarnd_Tail is the command tail for Command

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing’
Error_Mcsg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing!
Frompt is a simulated cammand line prompt after program
execution

IMPLEMENTATION

FUNCTION Match_Command (VAR FileSpec : FileStringg
VAR Command : Internal_Command) : boolean;

-

{ Matches the command in FileSpec against the above list of commands
processed internally by this program. Returns true if a command
is matched

Input: FileSpec 15 the command/file name
Output: FileSpec is adjusted to contain the compiete path, if any
Commard ic an enumerated type for internal commands
The function returns true if a command is matched
VAR

Found : bcoleszr;
index : Intermal_Command;

198

BEGIN
Found := FALSE;
FOR index := CD TO RMDIR DO

IF (Pos (Command_Namel index 1, FileSpec) =1) AND
¢ Length (Command_Namel index 1) = tength (FileSpec)) THEN
BEGIN
Found := TRUE;
Command := index;

END;
Match_Command := Found;
END;
Frocedure Run_Local (ProgramName, Cmdline : string;

VAR Response 1 stringl28;

VAR Restype Response_type;

VAR Error_msg stringl28;

VAR Errtype Response_type;

VAF Frompt : stringl28;
Batch : boolean):

{ Used tc spawn & child process, program name in Command,
perametere in Command_Tail. Program output, error responses,
ard a follow on command line prompt as it would appear from a
lccal command line processor are returned to the calling
program,

The use pof a secondary copy of COMMAND.COM to run batch files is from
{Mefford, 1988, p. Z27).

Input: FProgramName i the command to be executed with path
Cmdline is the command tail for ProgramName
Batch lets Run_Local know a batch file is to be executed

Output: FResponse ie the output of the program
Restype i=z the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Frompt is a simulated command line prompt after program
execution

b
4

begin
CheckBreak := TRUE;
IF Batch THEN BEGIN
Cmdline = ~ /¢ ' + programname + Cmdline:
{ set up temporary command.com 7
FrogramName := Find_Environment ("COMSFPEC’);
END;

199

GetDir (0, Prompt):

IF Redirection THEN BEGIN
Init_Redirect_Unit;
IF Redirect_All_Output THEN;

END;

Exec (Programname, Cmdline):
IF Redirection THEN BEGIN
IF Restore_All_QOutput THEN;
Restore_CRT_Assignments;

END;

RS_Cleanup;

RS_Restore (Current_COM):

Restype := file_type;

Recsponse := Redirect.Response_+file;

Errtype

1= strng;

IF doserror <> O THEN BEGIN
Error_Msg := Error_Code [DoskError 1;

END

else Error_Msg 1= '’
System.ChDir (Frompt)
Frompt := Frompt + “:'j
END:

CONST

SFACE :

Char = * "3

PROCEDURE Frocess_intrinsic_command (Command : Internal_command;

r
LS

Command_tail : StringlZ8;

VAR Response : Stringl28;

VAR Restype Response_type;
VAR Error_msg String128;

VAR Errtype Response_type;
VAR Frompt : Stringl2B);

Used to execute a command normally processed internally by
command.com. The program name is found in Command,
parameters in Command_Tail. Frogram output, error responses,
ard z follow on command line prompt as it would appear from a
local command line processor are returned to the calling

program,.

Input:

Output:

Command is the command to be executed with path
Command_Tail is the command tail for Command

Response is the output of the program

Restype is the type of Response (string, file, nothing)
Error_Meg ic the error output of the program

Errtype is the type of Error_Msg (string, fil=, nothing®
Frompt i3 a simulated command line prompt after program
evecution 7

200

CONST Current_Drive
Ratch_mode

VAR I0R : word;

byte = 0;
boolean = TRUE;

Current_Fath : FathString;
List : EquipmentListType;

BEGIN
CASE Command OF

D,

MD,

RD,

CHDIR,

MkDir,

Fromt,

RmDir : BEGIN
{$1-2
Restype

Errtype :

CASE Command OF

CcDh,
ChDir :

MD,
MEDIR @

FROMT :

RL,

RMDIR :

END;

System.ChDir (Command_tail);

System.MkDir (Command_tail);

GetDir (Current_Drive, Prompt

System.RmDir { Command_tail);

I0R := I0Result;

IF I0R %

O THEN

Error_msg := “G + Error_Code [IOR 3]
ELSE Error_msg := "%
GetDir (Current_Drive, Prompt)i

Response := '3
Frompt := Frompt + "'}
{¥143

END;

201

DEL,
LS,
DIR,
REN,
COFI,
ERASE ,
RENAME

EQUIF

BEGIN

IF Command = LS THEN Command := DIR;

Run_Local

END;

begin

{ Command_Name [Command 1 + SPACE,
Command_Tail,
Response, Restype, Error_msg, Errtype,
Frompt, Batch_Mode);

CheckBreak := TRUE;

GetDir (O, Prompt):

IF Redirection THEN BEGIN
Init_Redirect_Unit;
JF Redirect_All_Output THEN;

END;

Support.betEquip (List)3

Errtype := strng;
IF Redirection THEN BEGIN
IF Restore_All_Output THEN;
Restore_CRT_Assignments;
Restype := file_type;
Response := Redirect.Response_file;
IF doserror <> Q THEN N
Error_Msg := Errar_Code [DosError 1
else Error_Msg := "}

END

ELSE BEGIN
Restvpe := strng;
Fespaonse := ‘Unable’;

Error_Msqg

END;

.
.
"

System.ChDir (Frompt):
Frompt := Prompt + "'j

END;

END; {CASE}

END;

BEGIN

Redirectior := TRUE;

end.

{ output is normally redirected to file I

202

APPENDIX X

SOURCE LISTING FOR UNIT SUPPORT

3

969696 9 36 36 96 36 36 36 36 36 36 36 96 3 36 36 36 3 36 36 36 3636 36 96 36 36 36 96 36 36 96 36 36 36 36 36 36 36 36 3 36 36 36 36 36 3696 36 96 3696 3 36 96 96 36 36 9 36 36 3 % 3¢)

(%% SUPPORT. PAS *HER)
(#%%% Thic is the unit that contains typed constants for use *HEH)
{(#x%% by the main program Distrib to display window menus. HEER)

(#%%*% In addition to general purpose routines, the unit also *HEx)
(##%¥ contains the initialization procedure for the program. *EkE)

(¥ ¥H% FAEE)
(%%¥% HERE)
(#%#¥ References: Edwards, C. C., Advanced Techniques in Turbo *#¥#)
{%%%% Pascal, pp. 241 - 272, Sybex, Inc., 1987 FEHH®)
(%% % % #)
(F%%¥ Hall, W.V., "When Turbo Isn’'t Enough," in REER)
(%% %% Shammas, N.C., The Turbo Fascal Toolbook, ERHR)
(*R%¥ pp. 225 - 226, M % T Publishing, Inc., 1986. #*%¥s)
(F%%% FEE)
{(##%*% [onverted to a unit from program Turbocom.com in the *HE¥)
{(#%%% {$irst reference. *XEE)
(HE*¥ *F%*)
($2% ERER)
(»%¥% Last modification Sep 89 EEER)

(RREEEEEEEFEERFHBERRFEREF TR AR R ERERRERREEREEREF LR R R R R AR R RR RS LS LN
UNIT Support;

{ Modification History
4 Aug B89 - Changed introductory maintenance screen
Deleted conversion messages from TF 4.0 1}

INTERFACE

(¥ fREREtpenerunssxx% Start Edwards Excerpt #EEE#RERERERRRERERER)

Uses .
Crt,)
Des,
General,
Datacom,
wndow,
Printer;

(¥ Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybe:, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
FEBEFEEEEFRPRERFREFREEX Continue Edwards Excerpt (22322 ILITILTITIL LT D

-

207

(HRRHEERRREEXREXRERRE COntinue Edwards Excerpt #eeriiiifrienties)
Const Alt_A

30 :

Alt_B = 48;
Alt _C = 46;
Alt_D = 32
Alt_E = 18;
Alt_F = 33
Alt_G = 34;
Alt_H = 35
Alt_I = 23;
Alt_J = 363
Alt_kK = 37;
Alt_L = 28;
Alt_M = 50;
Alt_N = 49;
Alt_D = 24;
Alt_F = 25;
Alt_B = 163
Alt_R = 19;
Alt S = 21
Al T = 20
Alt_U = 223
Alt_V = 47;
Alt W = 17;
Alt_X = 4%5;
Alt_Y = Z1;
Al 7 = 44;
Home = 71;
Fgup = 73;
#gbn = B1;
Canst NUL = #0G0;
SOH = #01;
STX = #0323
ETX = $0Z;
EQT = #04;
ENG = %05;
ACH = 06,
BEL = $07;
BS = #08;
HT = #%09;
LF = $04;
VT = $0B;
FF = 00,
CR = $0D;
S0 = $0E;
SI = #%0F;

{# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Svkex, Inc. All rights reserved.

REIFEFERFRESRDFEXE S5 FF Cortinue Edwards Excerpt (22T TILTTTI LT Y

204

9696 3 36 36 3 3 3 6 9 36 36 9 2 3 3 3 3 3

DLE = #10;
DC1 = %11
DC2 = ¥12;
DCI = $13;
DC4 = #%14;
NAE = $15;
SYN = $16;
ETE = $17;
CAN = %18;
EM = $19;
SUR = $1A;
ESC = #1B;
FS = $1C;
GS = #1D;
RE = ¥1E;
uc = #1iF;
CEE = #47;

Type Phone_Name = String(Z01];
FPhone_Farams = Record

Continue Edwards Excerpt

36 9696 36 3636 96 3 3 96 9 3 36 3 96 3 9 -6 %)

Phone_Number:Stringl201;
Fhone_Baud:RS_Baud;
Fhone_Farity:RS_Farity;
Fhone_Length:Eyte;
Fhone_Stop:Byte:
Fhone_tcho: Booleany

Erd;

Record

Name:Fhone_Name;
Fhone_Data:Fhone_Farams;
Enc;

Ftone_Names = Record

Fhone_D

ata

Length:Integer;
Names:Array [1..1] of Fhone_Name;
End;

Array [1,.1]1 of Phone_Farams;

Communications_Type = Record

Speed:RS_Baud;
Farity:RS_Farity:

Length:Byte;
Stop:Byte:
End:

StringZ = StringlIl3;

Stringd = Stringl4];

{(# FReprinted with extensive modifications from Advanced Techniques in

Turbo Fascal by Charles Edwards, by permission of Sybex,

Copyright 1987 Sybex, Inc.
HEFRIREERFFERFFRERRES

Continue Edwards Excerpt

Inc.
All rights reserved.
REERRFERRRRFEREEERES)

205

(HEXEXXXEF XX XXX XXEE CoOntinue Edwards Excerpt #Ekerisitdiiiiseiises)

TYPE EquipmentlistType = RECORD
NbrOfPrinters,
NbrQfSerial,
NbrOfDiskettes,
InitialVideo,
RAMOnBoard : word;
IsGameFort,
IsDiskette : boolean;

END;
VAR List : EquipmentListType;

Var Phone_File:File of Phone_Record:
{Moved from Dialing Directory 3
Fhone_Menu,
01d_Fhone_Menu: "FPhone_Names;
Fhone_Stuff,
01d_Phone_Stuff:“Phone_Data;
Prtone_Frefix:String [10];
Echo,Frint,Ascii_Upload,Ascii_Download,End_Emul ator:Eoolean;
Status_Line:StringlB01;
Emulator:Stringl10];
Ascii_File ¢ File of Char;
Ascii_FileName:Stringl[2031;
Current _Fath:long_String;
Dial _Delay:Integer;
Laz* _Dizl:lnteger;

Type Default Type = Record {The default parameters for Distribl
Default_Name:Stringl301;
Default_Com:Byte;
Default_Modem:Byte;
Default_Phone:Stringl2017;
Default_Speed:RS_Haud;
Default_Farity:RS_Farity;
Default_Length:Byte;
Default_Stop:Bvte;

Defaul t_Echo:Roolean;
Default_Textcolor:Byte;
Default_Menucolor:Byte;
Defauit_Backcolor:Byte;
Default Prefix:Stringl101;
Default_Delay: Integer;
End;

{# FReprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All righte reserved.

FAEFLFEPEEAF AR R COrtinue Edwards Excerpt #edddifidiiiiriss)

206

(EREXREXEERXXERREXREE COntinue Edwards ExXCErpt #Eeeiirtemiesdteits)
VAR Current : Default_Type;

Const Defaults:Default_Type =
{Default_Name: ‘DISTRIE.CFG';
Default_Com:1;

Defaul t_Modem:2;
Default_Phone: "S53-1212";
Default_Speed: BE9600;
Default_Parity:None;
Default_Length:8;
Default_Stop:1;
Default_Echo:False;
Default_Textcolor:LightGray;
Default_Menucolor:Greeng
Default _Backecolor:Black;
Default_Prefix: "ATDTY,,9,, 3
Default_Delay:30);

Ok _Menu: Integer = 14
Ok _Msg:Stringl3l = "0k 3
Yes_No_Menu: Integer = 23
Yes_No_Msg:Array [1..2] of StringlZ]
‘No 7y
“Yee ')

I

Dial_Menu:Integer = 5;

Dial_Msg:fArray [1..5] of Stringlél = (
‘Di1al
‘Repeat’
‘Modify’
‘Delete’
‘Add

W a wm

.
1

Speed_Menu: Integer = 10;
Speed_Meg:hrray [1..103 of Stringl4]d = (
1107,

1507,
3007,
600",
12007,
‘24007,
‘4800 ",
RE00G 7,

(+ Reprinted with extensive modifications from Advanced Techniguee in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc., All rights recserved.

EFFERAERFFUEFEXEARX¥EF CoOntinue Edwards Ercerpt #Esssasisriisriaxiiss)

207

963696 3696 3636 36 36 36 36 36 3 36 9 36 3 % %

Continue Edwards Excerpt

"19K2°,
"IBKA) ;

FParity_Menu:Integer = 3j
Parity_Msg:Array [1..3] of Stringl4]
‘None ',
‘Odd °,
‘Even’)g

]

Stop_Menu: Integer = 2;
Stop_Msg:Array [1..2]1 of Stringlél =
‘0 Bits’,
1 Bit ")

I
-

Length_Menu: Integer = 4;
Length_Msg:Array [1..4] of Stringlé]
‘S Bits’,
"6 Bits',
‘7 Rits’,
‘B Rits’');

[}

Faram_Menu: Integer = 14;

Faram_Meg:array [1..14] of Stringllé] =
"Name ’
‘'Fhone Number
'Speed
‘Word Length
‘Parity
‘Stop Bits
‘Local Echo
‘Comm Port
‘Modem Port
‘Dial Prefix
‘Redial Delay
‘Foreground Color’
‘Background Color’
‘Menu Color

~ “ s A s e s e s
M e M W M e M A o e o

Color_Menu: Integer = 83
Color_Msg:Array [1..9] of Stringl7] = (

‘Black ',
‘Blue ’
‘Green °,
‘Cyan '

F694 33 3 3 936336 I 3 96 36 3 96966 -3¢)

{#* Reprinted with extensive modifications from Advanced Techniques in
Turbo FPascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc.

3 3 3 33 3 3 I 3 3 3 F e I F 3% %

Continue Edwards Excerpt

All rights reserved.
(T TITILTITLIITLILLLL S S D]

208

(HEEXERXEXFARXXXX*%¥% Continue Edwarde Excerpt #¥#edrsiiiridisiisss)

‘Red s
‘Magenta’,
‘Brown -,
‘White '
"Nothing ')

Comm_Menu: Integer = 2;

Comm_Msg:Array [1..2] of StringlS] = (
‘ComM 1,
‘CoM 27)

Protocol _Menu: Integer = 2;

Protocol _Msg:Array [1..2] of Stringlé6l =
‘Ascii 7,
‘XModem ‘) ;

Communications_Menu: Integer = 21;
Communlcatzons _Meg:Array [1..21) of Stringl103 = (
I00-E-7-1",

©OID0-D-7-17
© 200-N-8-1°
T1200-E-7-1"
1200-0-7-1"
T1200-N-8-1"
‘2800-E-7-1"
2400-0-7-
C2RAOO-N-
‘4800-E~
*4800-0-
“4800-N-
‘QEOGO-E~
TQLDI0~-0-

'9§un N-
—E-
2-0-
-N-
E

A a @ o W . w . .

8-
7-
7-
a8~
e

1
1
1
1
1
1
-1
-1
'19} -1
-1
-1
-1
-1

D R . N TR L IR R SR

\J\]ED\j\lm\l

'38h4 N-B-1"
Communications_Stuff:Array [1..21]1 of Communications_Type = (
(Speed: BIO0;Parity:Evenilength: 7;Stop: 1),
(Speed:RI00O;Farity: 0dd;:length: 7;Stop: 1},
(Speed:BIOC;Farity:None;Length:8;Stop: 1),
(Speed:B1200;Farity:Everni_ength:7;Stop: 1),
{(SpeedtB12003FParity:0ddilength: 7;Stop: 1),

~
T

t# Reprinted with ertensive modifications from Advanced Techniques in
TLrbo Fascal by Charles Edwards, by permission of Svbex, Inc.
Copyright 1987 Svbe:, Inc. 11 rlghts reserved.

*EFEFFEFAF AP RFEEFERXF Lontinue Edwards Evcerpt #¥#ErFfrsxaiiiiixdsss)

e
Z0

r-------.-----------.----.---------t:*

(HEREEXERREXEEXEXERX%E CoOntinue Edwards Excerpt 333 3 96 6 96 36 3 9 36 36 36 36 6 % 3 9)

(Speed: B1200;Parity:None;Length:B;Stop: 1),
(Speed: B2400;Farity:Even;Length: 7;Stop: 1),
(Speed:B2400;Farity:0ddjLength: 73Stop: 1),
{Speed: B2400;Farity:NonejLength:8;5top:1),
{Speed: B4B00O;ParitysEvenjlength:7;5top: 1),
(Speed: B4800;Parity:0dd;Length: 7;5top: 1),
{Speed: B4B00O;Parity:None;Length:8;Stop: 1),
{Speed: B9600;Parity:EvenslLength: 7;Stop: 1),
{Speed: B9600;FParity:0dd;Length: 7;Stop: 1),
(Speed: B9600;Parity:None;lLength:8;Stop: 1),
{Speed:B19200;FParitysEven;jLength: 7;Stopsl),
{(Speed:B19200;Parity:OddsLength: 7;Stop: 1),
{Speec: BI9200;Farity:None;jLength:B;Stop: 1),
(Speed:BIB400O;ParitysEvensLength: 73Stope 1),
(Speed:BEI24001Farity: DddsLength: 73Stop: 1),
{Speed:BIB400;Farity:None;Length:8;Stop:1));

Help _Menu: Integer = 173
Help_MsgifArray [1..171 of Stringl26] = (

"Alt-R ¥MODEM Get a file

‘Alt-8 Activate Server

"Fglp,

‘A1t~ XMODEM Fut a file

“Alt-¥X (ESDC) Exit emulator ’);
Help_Index:Array [1..17] of Byte =(

Alt_A,

Ait_E,

Alt _C,

Aalt L,

At _E,

Alt_F,

Alt G,

£l1t-A Change drive % path’,
‘Alt-E Send & Break signal’,
‘Alt-T Update Config File °,
"Alt-F Dialing Directory ,
"Alt-E Locsl echo toggle ,
‘Alt-F Change DC params ’
"Alt-5 Show disk directory’,
‘Alt-F Hang up phone "
“Alt-L DOS Shell '
‘Alt-M Activate Master "y
‘Alt-F Fert Operations ’
"Fghn '

3

]

L]

]

3

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copvyright 19€7 Svyber, Inc. All rights reserved.

¥EXFEFAEFERERF*FEEX3% Continue Edwards Excerpt 3963 3 e 3 3 3 3 I XXX %)

210

(HHRRERREXERXEXRXR%% Continue Edwards Excerpt 363636 9 3 3 36 3 9 96 36 9 36 I 6 4 96 %)
Alt_H,
Alt_L,
Alt_M,
Alt_FP,
PgDn,
Alt_R,
Alt_S,
Fglp,
AlL_T,
Alt_X);
Frocedure Initialize;
FProcedure Modify_Entry(l:Integer);
Frocedure Save_File(D:Boolean);
Procedure 0K (S:String3);
Functicon Yes(S:String4):Booleang
Frocedure Build_Status_Line;
Functiorn Check_Keyboard:Integer;
Function Check_Auuport:Char;
Furcticn Find_Environment (What:Ltong_String):Long_String:
Frocedure NoFile(S:lLong_String);
Frocedure GetEquip (VAR List : EgquipmentlListType)3
IMPLEMENTATION
Frocedure Initialize;
{Thic procedure initializes the default values and reads the phone filel
Var Fhone:Fhone_Record;
I1:Integer;
Configuration : File;
Numread : word;
(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
EEEREFEREEEREREEXX2EX Continue Edwards Excerpt SEsdiiersdridrisidiss)

2n

(RERREERRERFERREERRE COntinue Edwards Excerpt #¥EEseieiisiireisss)

Begin
Assign(Configuration, Defaults.Default_Name);
{$I-2
Reset (Configuration, Sizeof (Defaults));
If I0Result > O then Current := Defaults
ELSE Begin
BlockRead (Configuration, Current, Sizeof (Defaults),Numread);
Close (Configuration);
If IDResult > O then Current := Defaults;
End;
{F1+2
With Current do
Begin
ClrScr;
if not Mono then
Begin
SetColor (Default_Textcolor);
SetBackground (Default_Backcolor);
Menuground:=Default_Menucolor;
End;
Fhone_Frefixi=Default_Prefix;
Echo:=Default_Echo;
Dial_Delay:=Default_Delay;
Print:=False;
Ascii_Upload:=False;
Ascii_Download:=False;
GotoXY(27,1)3
Textcolor (Default_Textcolor+8);
Writeln('Remote Server Version 1.0°);
GotoXY(31,2);
Write! 'Maintenance Screen’');
GotoXY(35,3);
Write('Dr. kKodres’');
Textcolor (Default_Textcolor):
Write_Status(’ Initializing’,
Default_Textcolor shl 4+Default_Backcolor+$80);
End;
Last_Dial:=1;
Assign(Phone_File, 'DISTRIB.PHN)3
{¥i-3
Reset (Fhone_File):

(» FReprinted with extensive modifications from Advanced Techniques in
Turbe Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 197 Sybex, Inc. All rights reserved.

FEE Ry F¥RRFREF 423 E Continue Edwards Excerpt #EEdsisrd diiiiiiiss)

(REEEREHEREXRREFXXH%% Continue Edwards Excerpt Sekeedisfaiiriinits)

{§1+3

1f 10Result » O then
Begin {Create new file’
GetMem (Fhone_Menu,Size0f (Phone_Names)) ;
GetMem (Phone_Stuff,Size0f (Phone_Params));
Fhone_Menu™.Length:=1; '
Fhone_Menu”.Names[1]l:="...To be provided... "3
Move (Defaults.Default _FPhone,Phone_Stuff~[1], szeOf(Phone Farams));
Phone. Name:—Phnne_Nenu ‘«Names[11];
FPhone.Fhone_Data:=Fhone_Stuff~[11;
Rewrite(Fhone_File);
Write(Fhone_File,Fhone);
End

elce
Begin {Get phone file’
I:=FileSize(Fhone_File);
GetMem (Fhone_Menu, I#5ize0f (Fhone_Name) +2) ;
GetMem (Fhaone_Stuff,I1#5izeDf (Fhone_Farams));
Fhore_Menu™.Length:=I1;

I:=1;

{¥R-3
While not Eof (Phone_File) do
Begin
Read (Fhone_File,Fhone);
Fhone_Menu™.Names[I]:=FPhone.Name;
FPhone_Stuff“L[1J:=Phone.Phone_Data;
I:=1+1:
Ends
{¥R+}
End;

Close(FPhone_File);
With Current do
Begir

R3_Initialize(Default_Com,Default_Speed,Default_Farity,
Default_Stop,Default_Length);

End;
Write_Status(‘ ‘',Current.Default_RBRackcolor shl 4 +
Current.Default_Textcolor);
End: {of Initialize’

{#* FReprinted with exztensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FERFFRRFEREFEFRFFARE% Continue Edwards Excerpt #E¥Esfriieddeidiesss)

217

(#ExEEreerendnnrsxs®x Continue Edwards Excerpt #EE#EEadessisdiiesss)

Procedure Save_File(D:Raoolean);

{This procedure asks the user if he wants to save a changed
configuration

If so, it writes the appropriate file

Input D: True if saving default values
False if saving phone file

3
5

Var Configuration : Filej
Fhone:Fhone_Record;
J: Integer;

Begin
if Oper_Window(50,9,67,12,Flag_BRorders, ") = O then;
ClrScr;
If D then
Write!('Save defaults?’)
else
Write('Save this entry?’);
If Yes({ 'Save') then

Regin
ClrScr;
Write(’'Saving...)}
I+ T then
EBegin
Assign(Configuration, Defaults.Default_Name);
{£]-%
Rewrite (Configuration, Sizeof (Defaults))i
If I0OResult > O then
NoFile(Defaults.Default_Name)
else
Begin
EBlockWrite (Configuration, Current, 1 };
Close (Configuration);
End:
End
{3142
else
Begirn
{¥R-3

Assign (Phone_File, 'DISTRIB.PHN);
Rewrite(Phone_File);

(# PReprinted with extensive modifications from Advanced Technigques in
Turbo Pascal by Charles Edwarde, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FRERREXEERFIRRREXENEF Continue Edwards Excerpt #eEsdiiiiadriiessiss)

(FHHRERREREEHEEXRXERRE Continue Edwards Excerpt 396336 3 36 363 36 963 36 36 96 366 36 34 36 %)

For J:=1 to Phone_Menu™.Length do
Begin
Phone.Name: =Phone_Menu".Names[J];
Phone.Phone_Data:=Phone_Stuff~{J1;
Write(Fhone_file,Fhone);
End;

Close(Fhone_File)

End;
End;
If Close_Window then;
End; {of Save_Filel}

Frocedure Modify_Entry(I:Integer):
{This procedure modifies an entry in the phone list.

Input: I - If > 0 then the entry in the phone list to be modified
I+ = G then the default parameters
b}
Var J,k:Integer:
Status_Window,Menu_Window:Byte;
S:lLong_String;
E:EBoclean;

Frocedure Update_Status;
Var J:Integer;

Bzgin
{¥R-2
I+ Get_Window(Status Window! then;
For J:=1 to Param_Menu do
Begin
GotoXY(18,J0);
ClrEol;
Case J of
1: I+ 1 =0 then
Write(Current.Default_Name)
else
Write(Fhone_Menu™.Names[11);
2: I+ 1 =0 then
Write(Current.Default_Fhone)
else
Write(Phone_Stuff~[I1]1.Fhone_Number);
(%

Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1927 Sybex, Inc. ALl rightes reserved.
EREEERRARFEEAFRRRFH RS Continue Edwards Excerpt SeSissssaiisfsiyiiss)

r3

-
n

(%% H#¥EEEXXRRXXAE Continue Edwards Excerpt F696 3636 96 36 33 9696 36 3 36 3 96 H 96 % %)

Z: If I = 0O then
Write(Speed_MsglOrd(Current.Default_Speed)+11)

else
Write(Speed_MsglOrd(Phone_Stuff~[{1].Phone_Beud)+11);

I+ I = 0 then
Write(Length_MsglCurrent.Default_Lengqth-41])

else
Write(lLength_Msg[Phone_Stuff~[Il.Phone_Length-41);

If 1 = O then

o

Write(Farity_MsglMin{(Ord(Current.Default_Parity)
+ 1,30
else
Write(
Farity_MsglMin(Ord(Phone_Stuff~[1].Phone_Farity)
+1,3) D)3
6: I+ I = 0O then
Write(Stop_MsqglCurrent.Default_Stop+11)
else
Write(Stop_MsglPhone_Stuff~[1]1.Phone_Stop+11);
7: If 1 =0 then
Write(Yes_No_MsglOrd(Current.Default_Echo)+11)
else
Write(Yes_No_Msgl{Ord(Phone_Stuff*“[1].Fhone_Echo)+11);
8: MWrite(Comm_MsglCurrent.Default_Coml);
G: MWrite(Comm_Msg{Current.Defauvlt_Modeml);
10 Write(Zurrent.Default_Prefix);
11: Write(Current.Default_Delay};
12 Write(Color_MsglCurrent.Default_Textcolor+11);
12 Write(Color_MsglCurrent.Default_Backcolor+13);
14: Write(Color_MsglCurrent.Default_Menucclor+1l);
End; <{of Casel
End;
1+ Get_Window(Menu_Window) then;
End: {cf Updete_Status?

Eegin
If I = O then
If Mono then
Faram_Menu;=10
else
Param_Menu:=17%

{(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1927 Sybex, Inc. All rights reserved.

HEREEEEEEEXRELER¥2%F Continue Edwards Excerpt HFEsrdiisriiiriiiiiis)

216

(HRRXFEXXEXXFXXXR%¥% Continue Edwards Excerpt ##¥EEHEEEXENEEIEEEEE)

else
Faram_Menu:=7;
1f Open_Window(1,2,50,3+Param_Menu,Flag_Borders,
‘Parameters’) = 0 then;
Status_Window:=Active_Window™.1D;
ClrScr;
For J:=1 to Param_Menu do
Begin
GotoXY (1,373
Write(Param_MsgqlJl,’ ':)3
End;
1+ Open_Window(52,2,70,3+Param_Menu,Flag_Borders,
‘Options’) = 0 then;
Menu_Window:=Active_wWindow™. ID;
ClrScr;
Repeat Eegin
Update_Status;
J:=Frocess_Window_Menu(Faram_Menu) ;
Case J of
0: 3 {ESC...do nothing’
i Begin {Change Name}
If Open_Window(5,21,75,24,Flag_Borders,
‘Name ') = O then;
ClrScr:
Writef 'Name: ')i
Readln (S}
If Length(S) > O then
I 1 =0 then
Current.Default_Name:=S
else
Fhone_Menu™.NameslIl:=
p
1f Close_Window then;
End;
2: PBegin <{Phone number:
If QOpen_Window(S,21,75,24,Flag_Rorders,
‘Phone Number ') = 0 then;
CirScr;
Write('Phone Number: ');
Readlnrn(S);
14 Length(S) > O then
If I = O then
Current.Default_Fhone:=S

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo FPascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Irnc. All rights reserved.

FEunEREFAEENRnr222¢ Continue Edwards Excerpt SErfriaiiiifieiiiiss)

[]
e
~J

S s

(xXxExxeXxxxxxnxixx% Continue Edwards Excerpt ####¥1EXEEEEEREEEHEEE)

else
Phone_Stuff~[1].Phone_Number:=5;
If Close_Window then;
End;
Begin {Speed}
1+ Open_Window(49,5,79,14,Flag_Borders, 'Baud’) = 0
then;
ClrScr;
"t =Process_Window_Menu (Speed_Menu) ;
If K » 0 then
If I =0 then
Current.Default_Speed:=RS_Baud (k-1)
else
Phone_Stuff~[11.Phone_BRaud:=RS_Baud (K-1);
I1f Close_Window then;
End;
4: Begin <{Word Lengthl}
1¥ Open_Window(69,6,77,11,Flag_Borders, 'Bits’) = 0
thens
ClrScr;
k:=Process_Window_Menu(Length_Menu);
If £ > O then
If I = 0 then
Current.Default_Length:=K+4
else
Fhorne_Stuff~{1l.Phone_tength:=kK+4;
1¥ CLose_Window then;
End;
i Begin {Parity?
1+ Open_Window(b69,7,75,11,Flag_Borders,
‘Type') = 0 then;
ClrScr;
k:=Frocess_Window_Menu(Farity_Menu);
I+ K £ 3 then Ki=k-1;
If ¥ »= 0 then
I+ T =0 then
Current.Default _Farity:=RS_Farity (k)
else
Fhone_Stuff~[1].Phone_Parity:=RS_Farity(k);
If Close_Window then;
End;
b Begin {Stop bits?
1f Open_Window(69,8,77,11,Flag_korders,
‘Bits’) = O then;

A

t¥ Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FRXEFEREREFERXXREXRX* (Continue Edwards E;gcerpt (IS 2TTTITITILTS LT ELL SRS

218

(HREXEREEFRERHFXEAH#% Continue Edwards Excerpt #ekfxaeiiddeddiiiiss)

ClrScr;
71 =Frocess_Window_Menu{Stop_Menu) ;
If K = 0 then
I+ I = 0 then
Current.Default_Stop:=k-1
else
Phone_Stuff~LI].Phone_Stop:=k-1;
If Close_Window then;
End;
7: Begin <{Local echol
B:=Yes('Echo');
I+ 1 =0 then
Current.Default_Echo:=k
else
FPhone_Stuff~[I].Phone_Echo:=F;
End;
B: Begin <{Comm port>
14 Open_Window(6%9,10,76,12,Flag_Borders,
‘Fort’) = 0 then;
ClrScr;
Fi1=Frocess_Window_Menu(Comm_Menu) ;
I+ ¥ > O then
Current.Default_Com:=k;
If Close_Window then;
End;
S Begin {Comm port}
1f Open_Window(69,10,76,13,Flag_Borders,
‘Port’) = Q then;
ClrScr;
t.1=Process_Window_Menu{Comm_Menu) ;
If ¥ > 0O then
Current.Default_Com:=t;
I+ Close_Window then;
End;
10: Beg:n {Dial Frefix’
¥ Open_Window(5,21,75,24,Flag_Rorders,
‘Prefiy') = O then:
ClrScr;
Write('Prefix: '):
Readln (S}
If Length(S) > O then
Current.Default_Frefix:=5;
If Close_Window then:
End;

{(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copvright 1987 Syber, Inc. All rights reserved.

R REEREFXERRREFFRE Continue Edwards Excerpt #EEissrrdiiisriiiedsss)

(3636369 36 36 39 3 30 36 9 3 36 9 3 36 3 % %

11: Begin <{Default redial delay?

Continue Edwards Excerpt

FE96 9 3 36 3 3 9 36 36 96 36 9 63 9 36 3 3¢)

1 Open_Window(5,21,75,24,Flag_Borders,

‘Redial delay’) = 0 thenj;
ClrScr;

Write('Redial delay (in seconds): °');

Readln (Current.Default_Delay);
I+ Close_Window then;
End;

12, {Foreground color?

13, {Background color?’

14; Begin {Menu color?}

If Open_Window(69,2+43,78,11+J,Flag_Borders,

‘Colors’) = 0 then;
ClrScr;

k':=Process_Window_Menu(Color_Menu);

I+ £ » O then
Case J of

12: Current.Default_Textcolor:=kK-1;
13: Current.Default_BRackcolor:=k-1;
14: Current.Default_Menucolor:=k-13

End; {of Case’
If Close_Window then;
End;
End; {of Casel
End
urtil J = O3
I+ Close_Window then;
Save_Filell = 0)g
If Clocse_Window then;

{ER+5

End; {of Modify_Entry>

Frocedure 0K (S:Stringl);

{This procedure displays

acknoledgement from the user

Input: S - The title to use for the window

h
4

{*

Begin

a window on the screen and waits for an

1 Oren_Window(60,5,64,7,Flag_Borders,S) = 0 then;

If Process_Window_Menu(Ok_Menu) = 0 thenj
I¥ Close_Window then;
End: {of Ok

Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All righte reserved,

FRREEFRFERFEF 442442 Continue Edwards Excerpt

220

EXIZ2T ST SIISTI LSS L L D)

(HHHHXEEEEEXERFREXX%% Continue Edwards Excerpt 39 96 36 336 36 96 3 3 3 36 3 3 o %)

Function Yes(S:String4):Boolean;
iThie procedure prompts the user for a yes or no response

Input: § - The title tc use for the window

Output: True if YES was selected
Begin
If Open_Window(69,9,74,12,Flag_Borders,S) = ¢ then;
Yes:=Process_Window_Menu(Yes_No_Menu) = 23
If Close_Window then;
End; <{of Yes}

Frocedure Build_Status_Line;
{Thies procedure updates and displays the status linel

VAR Comport : stringlil;

Regin
Str (Current_COM, Comport);
Status_Line:=s’ ‘+ {40 spaces?

“s {80 spacess
Insert(Com Fort: ',Status_Line,l):
Insert (Comport,Status_Line,11);
WITH Datacom.Comport [Current_COM] DO

BEGIN
Insert { Speed_MsglORD{ Speed) + 1 1, Status_Line, 13);
Insert ("Baud °, Status _Line, 18):
Insert (Length_Msgl Length-41, Status_Line, 237);
Ingert (Farity MsgIMin(ORD{ Farity)+1, 321, Status_Line, 30);
ircert (Stop _Msgl Stop + 11, Status_Line, 35)

END;
I¥ Eche then

Insert ("Echo’,Status_Line,471;
I+ Frint then

Insert('Print’,Status_Line,52);
Insert{ Home for Help’ ,Status_Line,68);
Write_Status(Status_Line,Foreground shl 4 + Background);
End; {of Build_Status_Line}

Function Check_¥Keyboard: Integer:;

{This function checks for keyboard input

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybe , Inc.

Copyright 1987 Syber, Inc. ALl rights reserved.
FREXFHEXRREREREF2EF% Continue Edwards Excerpt S#EFasfRsiigfiseesss)

221

(HeERFERXXERXRXXXXXEAXX Continue Edwards Excerpt #E##erefeiieiiriitss)

Qutput: 0 if no key pressed
If normal key then high byte is O and low byte is value of key
If special key then low byte is 0 and high byte is value of key

3
Var Ch:Char;
Begin
If Ascii_Upload then
Begin
I1¥ Eof (Ascii_File) then
Begin

Close(Ascii_File);
Ascii_Upload:=False;
Build_Status_Line;
End
else
Regin
Read (Ascii_File,Ch):
1§ Ch = Char (LF) then
Ch:=Char (NUL);
Check_keyboard:=Ryte (Ch);
End
End
else if Keypressed then
Begin
Ch := Readkey:
I+ (Ch = #0) then
EBegin
Ch := Readkey:;
Check_kKeyvboard:=Byte(Ch) shl 8;
End
else
Check_keyboard:=Byte (Ch);
End
elze
Check_Keyboard:=0;
End; {of Check_keyboardX

Function Check _Auxport:Char;
{This function checks for input from the data communications port

I1f the appropriate global booleans are set, it will send the output
to the printer or to a disk file

Dutput: NUL if no character otherwise character received

>

(¥ FReprinted with extensive modifications from Advanced Techniqgues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

AEFRXRFEEEAFAFREEFERF Continue Edwards Excerpt #afsdrdeiirsiiiisiss)

jniniel
A

(FR¥XXFHEREXEXERERXEE COntinue Edwards Excerpt #EEEssrsdiitiises)

Var Ch:Char;
Begin
If RG23Z2_Avail then
Begin
Ch := RS232_1In;
If Ch <> Char (NUL) then
Begin
If Print then
Write(LST,Ch);
If Ascii_Download then
Wr.te{Ascii_File,Ch);
End;
Check_Auxport:=Ch;
End
else
Check_Auxport:=Char (NUL);
End; <{of Check_Auxport’

Function Find_Environment (What:Long_String):Long_String:

{This function searches the environment for a particular specifier of
the form: ID=Te:t

Input: What - the ID to loaok for

Output: The Text of the environment string or empty if not found
Type Envirornment = Array [1..32767] of Char;
Var Envirer:“Environment;

Erviron_Segment : word;

S:Long_String;

I:Integer;:
Regin
Erviror_Segment
Find_Environment
Whati=What+'="3
Environ:=FTR(Environ_Segment,(Q);
I:=1y
While Environ™[I] < ~@ Do

Begin

Si=""3

= MemW[FrefixSeq: $002C7;
=" {Assume not found’

{(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FEFFEFFERFXEERXXXXEXE% Contirue Edwards Excerpt X TTILSRLILLITIIZIRY LS

~m

A

(HERRXXXRXRRXERAXRR*E Continue Edwards Excerpt %4888 e5 885 %%)

Repeat Begin
S:=S+Environ™~(1J;
I:=I+1;
End

Until Environ®{1] = ~@;

If (Length(S) >= Length(What)) and
(Copy(S,1,Length(What)) = What) Then
Find_Environment:=Copy(S,Length (What)+1,Length (S)-Length (What))

else

1=1+1;

End;

End; {of Find_Environment?}

Procedure NoFile(S:Long_String);

{This procedure opens a window and notifies the user that a file was
not found?X
Begin
I+ Open_Window(4Z2,2,80,5,Flag_Borders, 'No file’') = 0 then;
ClrScr;
Write('Cannot find file ',5);
Ok (" ")y
I+ Close_Window then;
End; {of NoFile’

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

ERREXRERRRERRRERFERRFHH% End Edwards Excerpt #EEseiiiirireiiieeiieises)

(HEEFEEERERLRFREERXF ¥ Start Hall Excerpt T2 ZTTEIIEL RS INL LTI T L REY)
Frocedure GetEquip { VAR List : EquipmentListType);

CONST SYS_INT : byte = #11;

VAR Regs : Dos.Registers;

BEGIN

With List DO BEGIN
With Regs DO BEGIN

(# The library BetEquip appears in The Turbo Pascal Toolbook by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-800-533-4372. Minor modifications by Nelson

Argd.
EXEXFRERERXREREREERER ¥ 2% COntinue Hall Excerpt SEfeddsdrdeaedeisiss)

D
Ay

(¥R X XXX RHRRRRFRFREHREE COntinue Hall Excerpt #Eeesiiesesditiesss)
INTR (SYS_INT, Regs);
NbrOfPrinters := AH SHR 6;
IsGamePort := (AH AND #10) > {3
NbrOfSerial := (AH AND $0E) SHR 1j
IsDiskette := (AL AND $01) = 1;
IF IsDiskette THEN
NbrOfDiskettes := (AL SHR 6) + 1
ELSE
NbrDfDiskettes := (AL SHR 6) + 0

InitialVideo := (AL AND $30)SHR 4;

CASE InitialVideo OF

1 : InitialVideo

2 : InitialVideo
: InitialVideo

)

monon
fe)

s ®5 ee
~N M)
an as aa

END;
RAMOnBoard := ((AL AND $0C) + 1) * 163
END; { Regs X

Writeln;

Writeln ('No. of Printers = °, NbrOfPrinters);
Writeln (’No. of Serial = ', NbrOfSerial)
Writeln {('No. of Diskettes = °, NbrOfDiskettes);
Writein ('InitialVideo = °, InitialVideo);

Writeln (°RAMOnRoard ‘y RAMOnEoard)3
Writein ('IsGameFort "y lsGameFort)
END3;
END:

(# The library GetEquip appears in The Turbo Fascal Toolbook by Namir
C. Shammas (ed.) and has been reprinted with the permissiorn of the
publisher M & T Books 1-BOO-S33-4372. Minor modifications by Nelson
Ard.

EREREAERFRERRERRERFF RS20 %% End Hall Excerpt SEEiiriiiiisiiisiiiirsas)

BEGIN
END.

r)
r)
n

{
APPENDIX Y
SOURCE LISTING FOR UNIT WNDOW

3

{33630 30 K 303000 060303 0063603 30630000 36300000 J0 30T 36903020 00 3 36 300 JEJ 3600 36 33 3 3 M)
(*%®x WNDOW. PAS HHEH)
(##%% This is a library of general purpose routines to *HRR)
(x#%¥% display windows and control menu bars for selectors on *H%%)
(x#%% the IBM FC screen. FHEE)
(€222 L2232
(¥xx# Reference: Edwards, C. C., Advanced Techniques in Turbc #¥#%)
(k%% Pascal, pp. 73-97, Sybex, Inc., 1987 *HEFE)
{ %% %% #EHE)
(¥#%% Modified slightly to make a Turbo Fascal 4.0 Unit *X¥H)
{3 %®n FEHH)
(#%##¥ Last Modification: Sep 89 EEER)

(ETT222ITITILLLLSZZITLITIIZILZSLTLLZZILLZ SRS LELTEIZIZLIZ TSI L S Y
UNIT Wndow;

INTERFACE

(F¥HXHFEXFRXERERXRX%X Start Edwards Excerpt SEXEeiisissisietesiss)
USES General, Crt, Dos;

.(3:!')_ 3

Type Window_Link “Window_Control _Block;

Screen_Line = Array [1..80] of WORD; {! changed per
upgrade 3

Screen_fArray = Arrayl1..28]1 of Screen_Line;

Screen_Block = Array[1.,2000] of Integer;

Window_Title = Stringl503l;

Window_Contrel _Elock = Record
X1,Y1,X2,Y2:Byte; {Window boundaries>
X,Y:Byte; {Cursor location>
I1D: Byte;

Menu_Inde:x: Integer;

Menu_TopY:Integer; (The top item in a menu’
Flag:Byte;

Foreground,Menuground: Byte;

(¥ Reprinted with extensive modifications from Advanced Techniques 1in

Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved. -
FPrEFEFERERFEFRFRARE4% Continue Edwards Excerpt #¥ffrfridddiiiiines)

N
r)
o

(HHHHEHEEEEXEAARXXE®% Continue Edwards Excerpt 33636 96 96 3 36 96 96 3636 396 3 3 96 96 % % %)

Title:Window_Title;
Back_tink:Window_Link;
Screen_Contents:Screen_Block;

End; <{of Record Window_Control_Blockij

Border_Type
Long_String

(8ingle,Double);
STRINGL2S5];

Const Foreground:Byte = LightGray; {Color within the windows?

Menuground:Byte = LightGray; {Color of the menu borders?
Background:Byte = Black; {Background color}

{These are the bit values of the field "Flag" in Window_Control_Block’

Const Flag_Borders = $01; {borders on the window}
Flag_Goto = $02; {Goto to this window is allowed?
Flag_Relocate= $04; {Window may be relocated}
Flag_Close = $08; {Window may be closed from main

menu’l
Var W,

Active_Window:Window_Link;
Window_Count:Integer;
Window_Fixed_Fart:Integer;
Maorc: Boclean;
{Forced to assign these variables on the same line - type mismatch
Screen,
Screen_New,Screen_Temp:“Screen_Array;

Procedure SetColor (Color:Byte):
iThis procedure sets the forground color’

Frocedure SetBackground(Color:Byte);
{This procedure sets the background color:

Frocedure Get_Dummy_Screen:
{This procedure changes Screen to point to a dummy screen area on
the heap:

Frocedure Get_Real _Screen;
{This procedure undoes the work of Get_Dummy_Screen}

(# FReprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copvright 1987 Sybex, Inc. All rights reserved.

#EERERFEERRRFRRFFRE¥% Continue Edwards Evcerpt Srredtirfiisdrerris)

el
s

(EFRREXEEXXXXXERRX%HE Continue Edwards Excerpt #reseiirie®rirbii i)
Procedure Build_BRorders(Lines:Border_Type);

{Purpose:
This procedure builds a border around a window.

Input:
Lines:Single = Single line border
Double = Double line border
Qutput:
None 7

Function Open_Window(X1,Y!,X2,Y2:RByte;Flag:Eyte;
Name:Window_Title) :Byte;
{Purpose:
This function opens a window on the screen and places a border
around it.

Input:
X1,X2,Y1,Y2 are the coordinates of the window to be opened.
Flag is a bit mask of functions allowed in this window
Name is the title of the window

Jutput:
Open_Window returns a byte as follows:
& = Window opened Ok
1 Invalid window coordinates

-~

2 Not enough memory

Functicn Close_Window:Boolean:
{This function closes the currently active window.

Cutput:
Returns a True if there is no currently active window.

hY
J

Function Save_Window:Window_Link;
{This procedure saves off the current window % closes it

Qutput:
Foirter to the saved window

N
4

(¥ Reprinted with extensive modifications from Advanced Technigques in
Turbo FPascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybexz, Inc. All rights reserved.

FEEREEREEFRXEEREREFR% Continue Edwards Excerpt FEErisidiikiiiiidis)

(R RHHEREEREEXENERA¥E Continue Edwards Excerpt #%EEEEFEEEEFREREREER)

Function Restore_Window(W:Window_Link):Boolean;
{This procedure re-creates a saved window on the screen’

Function Get_Window(Which: Integer):Boolean;
{This procedure brings window "Which" to the top of the screen}

Function Move_Window(X,Y:Integer):Boolean;
{This procedure moves the current window by “X,Y" locations?

Frocedure Write_Status(S:Long_String;Attrib:Integer);
{This procedure writes to line 25 of the display

Input: S = String to be written
Attrib = Video attribute byte to use

h3
B

Function Frocess_Window_Menu(Var Menu):Byte;

{This procedure will display and process a menu in the currently
active window.

Tre menu may be longer or shorter than the actual window.

Input: Menu - A pointer to a record with the following format:
Eytes 0-~1: An integer giving the number of string
variables
Bytes Z2~n: A series of 5tring variables.

Jutout: The function returns the index (1 relative) of the item
celected. A zerc is returned if the ESC key is pressed

Frocedure Init_Window_Info;
{This procedure initializes all the of data used by the
windowing routines’

IMFLEMENTATION

Frocedure SetColor (Color:Byte);
{This procedure sets the forground color

Input: Color = Color to set forground to 3
Begin
Foreground:=Color;
Textcolor (Color);
End; {of SetColor?

(* Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

EAPFRFXEREXREREFXEFEE%E Continue Edwards Egcerpt 369696 36 3 36 36 363 3 363 96 3 I 2 B)

229

(RHHERHRRFERR XXX XA%% Continue Edwards Excerpt S#Erf4reE#iaaidiidiss)

Procedure SetBackground{(Color:Bytel;
{This procedure sets the background color

Input: Color = Color to set background to
3
Begin
Background:=Color;
Textbackground(Color);
End; <{of SetBackground}

Frocedure Get_Dummy_Screen;
{This procedure changes Screen to point to a dummy screen area on
the heap’
Begin
If Screen_New <X Nil then
Begin
Screen_New™:=5creen™;
Screen: =5creen_New;
End;
End; {of Get_Dummy_Screenl

Frocedure Get_Real Screen:
{This procedure undoez the work of Get_Dummy_Screen’
Begin
if Screen_New <> Nil then
Begin
Screen_Temp~:1=Screen_New"™:
Screen:=5creen_Temp;
Enc:
End; <{of Get_Real_Screen?

Frocedure Build_Borders(Lines:Border_Typel;

{Furpose:
Thie procedure builds a border around a window.

Input:
Linec:Single = Single line border
Double = Double line border
Output:
Nore 2

{(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1967 Sybex, Inc, All rights rese ved.

FEXFXEXXERFRREXRX%X%% CoOntinue Edwards Excerpt #Easededsetsdieriiss)

270

(EXERREERERERAHARRRRE CONtinue Edwards Excerpt #EEissetiiiisiiiinis)

Const Upper_Left:Array [0..1] of Char = (#218,7J);
Upper_Right:Array [0..1]1 of Char = (#191,#187);
Lower_Left:Array [0..1]1 of Char = (#192,#200);
Lower Right:Array [0..1]1 of Char = (#217,#188);
Vertical:Array [(..1] of Char = (#179,#186);
Horizontal:Array [0..1] of Char = (#196,#2095);

Var Index:Byte Absolute Lines;
XX,YY,l:Byte;
MG,H,V: Integer;
Begin
I:=1;
With Active_Window™ do
EBegin
I (Flag and Flag_Relocate) = Flag_Kelocate then
Upper_Leftl11:="J
else
Upper_Left[1]:=#201;
MG: =Menuground shl 83
:=MG+Byte (Horizontal[Inde:x 1)
Vi=MG+Byte (VerticallIndex1);
Screen™[Y1,X1l:=(MG)+Byte(Upper_LeftlIndex]);
Screern™[Y1,X21:=(MG)+Byte (Upper_RightlIndex1);
Screen™[Y2,X1J:=(ME)+Byte(Lower_left{Index1);
Screen™[YZ,X2]1:=(MG) +Byte (Lower_RightlIndexl);
XA:=X1+1;
While XX < X2 do
Begir
I+ I <= Length(Title! then
Screen™[Y1,XXl:=(Foreground shl 8)+Byte(Titlelll)
+ Index shl 11
else
EBegin
FillWord(Screen™[Y!,XX1,X2-XX ,H);
XXs=X23
End:
XXe=XX+1;
I:s=1+1;
End;
FillWord(Screen™[Y2,X1+13,X2-X1-1,H)}

{* Reprinted with extensive modifications from Advanced Techniques in
Turho Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

e REEEEREExF42n%%* Continue Edwards Excerpt SEErexeratdiisiirirsis)

271

et

(REREXFRXXEEREXRRXRE%E Continue Edwards Excerpt #E#%6568%58%%HXEHEREKX)

For YY:=Y1+] to Y2-1 do

Begin
Screen™[YY,X11:=V;
Screen™LYY,X21:=V;
End;

End; <{of Withl
End; <{of Build_Borders}

Function Open_Window(X1,Y1,X2,Y2:Byte;Flag:Byte;
Name:Window_Title):Byte;
{Purpose:
This function opens a window on the screen and places a border

arocund it.

Input:
X1,X2,Y1,Y2 are the coordinates of the window to be opened.

Flag is a bit mask of functions allowed in this window
Name is the title of the window

Output:
Open_Window returns a byte as follows:
0 = Window opened OF
= Invalid window coordinates
= Not enough memory

Py v

hS
4

Var Block:Window_Link;
Line_Length,Window_Size,l:Integer;
Y,Borders:Eyte;

EBegin
if Active_Window < Nil then
If Active_Window”.Flag and Flag_Borders = Flag_Borders then
Build_Borders(Single);
Line_Length:={XZ2-X1+1):
Borderce:=Pytei{Flag and Flag_Borders = Flag_FRorders);
Window_S:ze:=Line_Length® (Y2-Yi+1)#2+Window_Fixed_Fart:
If (X1 7 1y er (X2 > 80) or (Y1 < 1) or (YZ > 20) or
(X2-X1 < 2} or (Y2-¥1 < 2) then
Oper_Window:=1
eise if (MemAvai. ¢ Window_Size+l) and (MamAvail »>= 0) then
Open_Window: =2
else Begin
GetMem(Elock ,Window_Size):
Block™. X1:=X13

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charlecs Edwards, by permission of Svbe:., Inc.
Conyright 1987 Sybe:, Inc. All rights reserved.

FERRFRFEEERFRFFEXE*X2 Cortinue Edwards Excerpt IZ2TTITTILRILILT LS L L D)

Lo ke der)
aral

(EREFEXEFX XX AXXE%xX%% Continue Edwards Excerpt 363696 3 3 396 3 36 96 96 3 9 3 9 9 3% 3 %)

Block™. X2:=X23
Block™.Y1:=Y{;
Block™.Y2:=Y2;
Block™. X:=WhereX;
EBlock”.Y:=WhereY;
Block~.Title:=Name;
Rlock™.Flag:=Flag;
Block™.Menu_Index:=0;
Elock™.Meru_TopY:=0;
Block~.Foreground:=Foreground+(Background shl 4);
Block”™.Menuground: =Menuground+ (Background shl 4);
Rlock".Back_Link:=Active_Window;
Active_Window:=BElock;
I:=1;
For Y:=Y1 to Y2 Do
Begin
Move (Screen™[Y,X11,Block™.Screen_Contents[I],
Line_Length*2);
I:=I+Line_Length;
End;
Window
(Xi+Borders,VYil+Eorders,X2-Borders,Max ((Y2-Borders) , (Yi+Borders+1)))i
If Borders = 1 then
Build_Borders(Doublej;
GotoX¥(1,1);
Window_Count:=Window_Count+1;
lock™. ID:=Window_Count;
Cpen_Window: =0;
End;
Erdy {of Open_Window}

Function Close_Window:Booleang
tThiz function closes the currently active window.

Dutput:
Returns & True if there is no currently active window.

A
4

Var Block:i:Window_Link;
Line_Length,Window_Size,Il:Integer;
Y,Borders: Byte;

Begin
1+ Active_Window = Nil then
Close_Window:=True

(# Reprinted with extensive modifications from Advanced Techniques 1in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

RFREEFRERFERERERERF¥% Continue Edwards Excerpt PRI IIR LS TLLLSD

Ay
P

(HExEEXEEEXEXEREXAR%* Continue Edwards Excerpt 3659 3 3 3696 3 3 96 36 3 30 36 3 3 3 0 3)

else
Begin
Block:=Active_Window;
Line_Length:=(Block”.X2-Block”.X1+1);
Window_Size:=Line_Length*(Block".Y2-Block™,Y1+1)#2
+ Window_Fixed_Fart;

I:=1;
For Y:=Block™.Y1l to Block™.Y2 Do
Begin
Move (Block™.Screen_Contents[1],Screen™[Y,Block™.X11],
Line_Length*2);
I:=I+Line_Length;
End;
Active_Window:=Block™.,Back_Link;
I+ Active_Window = Nil then
Window(1,1,80,25)
else with Active_Window™ do
Begin
Eorders:=Byte(Flag and Flag_Borders = Flag_Borders);

Window(X1+Borders,Yl+Rorders,X2-Borders,Max ((YZ2-Borders) ,
(Y1+Bordercs+11));
If Bordere = 1 then
Build_Rorders(Double);

SetColor (Foreground and 7);
SetBackground (Foreground shr 4);
Erd;

GotoXY(Block™.X,Block™,Y);
FreeMem (Flock ,Window_Size);
Window_Count:=Window_Count-1;
Close_Window:=False;
gnd:

End; {of Close_WindowX

Function Save_Window:Window_Linkg
{This procedure saves off the current window % closes it

Dutput:

Fointer to the saved window
Var WiWindow_Link;

Begin

W:=Active_Window;

{#* Reprinted with extensive modifications from Advanced Techniques in
Turbeo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

e rarrseiriyradxrixd Continue Edwards Excerpt #rddddddiiiiiiixiixr)

2Z4

(#xxrearxrexeireesss Continue Edwards ExcCerpt #E¥ssisderiistssss)

1 Open_Window{W".X1,W". Y1 ,W". X2,W*, Y2,W".Flag,W*.Title) > O then

Save_Window:=Ni1l

else
Begin
Active_Window™, ID:=W",1D;
Active_Window™.Menu_Index:=W".Menu_Index;
Active_Window™.Menu_TopY:=W".Menu_TopY;
W:=Active_Window;
Active_Window:=W",Rack_Link;
1+ Close_Window then;
Save_Window:=W;
End;

End; {of Save_Window}

Function Restore_Window(W:Window_Link) :Boolean;
{This procedure re-creates a saved window on the screen’
Begin
SetColor (W".Foreground and 7);
SetRackground (W".Foreground shr 4);
If Cpen_Window(W".X1,W . Y1, W . X2,W".Y2,W" . Flag,W".Title) > O then
Restore_Window:=True
else
Begin
Aztive_Window™.ID:=W", ID;
Active_Window™,Menu_Inde:x:=W",Menu_Index;
Active_Window™.Menu_TopY:=W".Menu_TopY;
W-,Back_Linki=Active_Window;
Active_Window:=W;
Restare_Window:=Close_Window;
End;
Erd; {of Restore_Windowl

“urction Get_Window(Which: Integer) :Boolean;
{This procedure brings window "Which" to the top of the screen?
Var WindowF:Window_Link;
Function Move_Windows:Boolean;
Var WiWindow_Link;s
Begin
W:=Save_Window;
If W= Nil then
Move_Windows:=True
Else
If W .ID < Which then

(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission 2+ Svybex, Inc.
Copyright 1987 Syber, Inc. All rights reserved.

HEXEFREARFSF ¥4 #A%¥#4¥¥ [Lontioue Edwsrds Excerpt 2SI LTI LE LD

(EkrExREExEXxe*x2%%% Continue Edwards Excerpt

Begin

I+ Move_Windows then
Move_Windows:=True

else

936336 396 96 3 3 9 96 36 96 36 96 I 2 3)

Move_Windows:=Restore_Window (W) ;

End
else
Begin
WindowP:=W;
Move_Windows:=False;
End;
End; {of Move_Windows)
Begin <{Duter block of Get_Window>
Get _Window:=False;
WindowF:=Active_Window;
While (WindowP <> Nil) and (WindowF™.ID
WindowF:=WindowF~.EBack_Link;
I WindowF = Nil then
Get _Window:=True
elee if Active_Window™.ID <> Which then
Begin
Get_Dummy_Screen:
I+ Move_Windows then
Get_Window:=True
else
Get_Window:=Restore_Window{WindowF) ;
Get_Real _Screen;
End;
End: {of Get_Window’

Function Move_Window(X,Y:Integer):Boolean;

<> Which)

do

{This procedure maves the current window by "X,Y" locations:

Var W:Window_Lirkg
XC,YC,Line_Length,YI,Rorders: Byte;
I:Integer;

Begin
Ws=Active_Window;
If W = Nil then
Move_Window:=True
elee 1f (W .X1+4X < 1) or (W™, Yi+Y <
or {(W-.Y2+Y =
then Move_Window:=True
else Begin
XC:=WhereX;

1) or
24)

{(# Reprinted with extensive modifications from

Turbo Fascal by Charles Edwards, by permission of Sybe:,
All rights reserved.

Copyright 1987 Sybex, Inc.
EEEFREFEEAERRRERRR%%% Continue Edwards Excerpt

276

(W, X24X = 80)

Advanced Techniques in
Inc.

696 5696 9696 96 06 96 36 06 96 0696 96 06 96 06 6 6)

(HHEHXEXRFREXFREXRXE% Continue Edwards Excerpt F 3 36 36 3636 3 3 36 36 36 36 696 96 3 3 2 % 3¢)

YC:=WhereY;
Line_Length:=W".X2-W", X1+1;
it=1;
For YI:i=W".Yl to W".Y2 do
Begin
Exchange (W”~,Screen_Contents{13,Screen”{YI,W".X13],
Line_Length#*#2);
I:=I+Line_Length;
End;
WL X =W, X14X;
W Y1e=W™, Y1+Y;
W X2 =W~ X2+X;
W, Y2 =W Y2+Y;
I:=1;
For YI:=W~".Yl to W".YZ do
Begin
Exchange (W".Screen_Contents[1],Screen™lYI,W".X11,
Line_Length#2);
I:=I+Line_Length;
End:
Eorderc;=Byte(W™.Flag and Flag_Borders = Flag_Borders!;
Window (W™, ¥1+Borders,W™, YI+Borders,W . X2-Borders,
Max { (W, ¥Y2-Borders!, (W . Yi+Borders+1)));
GotoXY (XC,Y0)
Erd;
Erc: {of Move_Window?

Frocedure Weite_Status(Siborng_StringiAttribi:integer);
{Thiz procedure writes to line 295 of the display

inrput: € = String to be written
Attrib = Video attribute byte teo use
Var X:BEyte;
Hegin
Fttribr=Attrit shl 8;
For X:=1 tc 80 do
14 X * Length(S) then
Screen™[25,X)i=Attrib+$20C
else
Screen”[25,X1:=Attrib+Ryte(SIX1);
End; {of Wr-ite_Status?

(# Reprirntec with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copv~igtz (927 Sybew, Inc., All righte reserved.

FLEFFEESFSFAXEEFHF 33> Continue Edwardz Eucerpt HEREriissairisississ;

- -
e

(FERFERXXFXXERXXXEX%* COntinue Edwards Excerpt #eeesdiiireitissrs)

Function keyin (Checkit:Boolean):Integer;
{This procedure reads in a key from the keyboard.

True if we shauld call Special_Frocessing to check it
False if we should not call Special_Processing

Input: Checkit

Output: The value of the key read
Function keys are returned with a 0 in the low byte and the
extended scan code in the high byte
Var C:i:Char;
key: Integer;
Done:Boolean:
Begin
Done:=True;
Repeat
Begin
Repeat until kKeyFressed;
C := Readkey;
I+ (C = $#0) then
Reg in
C := Read%ey;
Feyi=BEyte(l) shl B;

uritil Doned
Feyin:=tey:
Erd: {of keyini

Furction Process_Window_Menu{Var Menu):Byte;

{This procedure will display and process a menu in the currently
active window.

The menu may be longer or shorter than the actual window.

Input: Menu - A poirter to @ record with the following format:
Eytesz 0-1: An integer giving the number of string
variables
Bvtes 2-n: A series of String variables.

(¥ Reprinted with extensive modifications from Advanced Techniques 1n
Turbo Fascal by Charles Edwarde, by permission of Sybex, Inc.
Copyright 1987 Sybe:, Inc., All rights reserved.

rEEXEARFRERRNREASH232 Cortinue Edwards Excerpt SEessiifiitsreeisEs)

278

(FEERXFXFERRR¥ARRX2%#% Continue Edwards Excerpt #EExsseisisfiiseisns)

Qutput: The function returns the index (1 relative) of the item
selected. A zero is returned if the ESC key is pressed
. Var Menu_Count:™Integer;
Menu_Item: “Long_String;
Menu_QOffset:Integer Absolute Menu_Item:
. Window_Size,I,J,kKey: Integer;
Done:Boolean;
Procedure GaUp;
{This procedure moves up to the prior item in the menul
Begin
Menu_Offset:=Menu_Offset-Length (Menu_Item™)-1;
I:=I-1;
If 1 ¢ Active_Window".Menu_TopY then
Begin
GotoXY(1,1);
InsLine;
Write(Menu_Item™);
Active_Window™.Menu_TopY:=I;
End;
End; {cof Golpl
FProcedure GoDowng
{This procedure moves down to the next item in the menu?
RBegin ‘
Menu_Offset:=Menu_0Offset+Length (Menu_Iltem™)+1;
I:=1+1y
if 1 = Active_Window".Menu_TopY+Window_Size then
- Begin
GotoXY (1,103
Deltine-
GotoXY (4 ,Window_Size);
Write(Menu_ltem™);
Active_Window™.Menu_TopY:=Active_Window™.Menu_TopY+1:
End;
End; {ocf GoUp:
Frocedure GoHome;
1This procedure positions the cursor in the home position:
Begin
While I > 1 do
Golp;
End; {of GoHomel
FProcedure GoEnd;
iThis procedure positions the cursor in the end positior:
Begin

(+ Reprinted with extensive modifications from Advanced Technigques in
Turbo Fascal by Charles Edwards, by permission of Sykex, Inc.
Copyright 1987 Sybex, Inc. All rightz reserved.

HEEFFELFEEFERERFF RS Continue Edwards E;.;'Cerpt HUEERFEFRFHEREEREERD

o

-ty

(#XXEXEREXRERRFXXX%%% Continue Edwards ExCerpt ###essddii®esisisins)

While I < Menu_Count™ do
GoDown;
End; {of GoEnd}
Procedure Set_Highlights;

Begin
With Active_Window™ do
EBegin
If I = Menu_Index then
Begin

Textcolor (Foreground shr 4);
Textbackground (Foreground and 7)g
End
else if I = Abs(Menu_Index) then
Begin
Textcolor (Rlue);
Texthackground (Black)
End
else
Begin
Textcolor (Foreground and 7):
TextBackground (Foreground shr 4);
End;
End;
End; {of Set_Highlights3
Begin
Menu_Caunt:=Addr (Menu);
Menu_Item:=Ftr (Seg (Menu) ,0fs (Menu) +2);
Window_Size:=Active_Window™.Y2-Active_Window™.Y1-1;
If Active_Window™.Menu_Index <= O then
Begin
ClrSzr;
Active_Window™.Menu_TopY:=1;
For I:=1 to Min(Menu_Count~,Window_Size) do
Begin
GotoXY(1,1);
Set_Highlights;
Write(Menu_Item™);
Meriu_Cffset:=Menu_0Offset+Length (Menu_Item™)+1;
End;
If Window_Size = 1 then
Build_Borders(Double);
End;
Meru_Iltem:=Ftr (Seg (Menu} ,0fs (Menul+2};

{# Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FEEAXRXERRREFF XA ¥ RIH Continue Edwards Excerpt #ERisiaiiiidiiiieiss)

240

(HEHEHHREAEERAEE¥R#¥% [Continue Edwards Excerpt 33 36 36 3 3936 336 3 3 3 9 3 3 4 34 3)

For 1:=1 to Active_Window™.Menu_lIndex-1 do
Menu_Offset:=Menu_0ffset+Length (Menu_ltem™)+1;
I:=Ma: (Active_Window™.Menu_Index,1);
Active_Window™.Menu_Index:=Min{(Active_Window".Menu_Index,0);
Done:=Fal se;
Write_Status('Choose item using the arrow keys "*X " & Y’
+ #179° Press ESC to abort °+
#179° Press ‘'~G#217° when done’,Foreground shl 4);
Repeat Begin
TexztColor (Active_Window”™.Foreground shr 4);
TextBackground(Active_Window™.Foreground and 7);
GotoXY (1,I-Active_Window™.Menu_TopY+1);
Write(Menu_Item™);
Set_Highlights:
GotoXY(i,1-Active_Window™.Menu_TopY+1);
Cursor_Size(Cursor_Invisible,Mono);
Fey:=keyin(True);
Write(Menu_ltem™);
Case Lolkey) of
01 Case Hi (Key) of
72: If I > 1 then
Golp
else
GoEnd;
go: If I < Menu_Count™ then
SoDown
else
GoHome;
73: For J:=1 to Window_Size do
I+ I 1 then
GaUp:
8l: For J:=1 to Window_Size do
if I < Menu_Count™ then
GoDown s
7i: GoHome;
79: GoEnd;
Else Beep (100);
End; {of case’
1Z: Begin
Frocess_Window_Menu:=I;
Done:=True;
End;

' Feprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc,
Copyright 1987 Sybex, Inc. All rights recerved,

FEXFFAREFRRFRERRA¥EE CoOntinue Edwarcs Excerplt #rrsiissimrkiddisss)

(#EREREXFEFRXXAXXX%% Continue Edwards Excerpt #EEedsdisiikieities)

27: Begin
Frocess_Window_Menu:=0;
Done:=True;
End;
Else Beep(100);
End; <{of casel
End
Until Done;
With Active_Window" do
Begin
Menu_Index:=1;
TextColor (Foreground and 7);
TextBackground (Foreground shr 4);
End;
Write_Status ('’ ,Foreground);
Cursor_Size(Cursor_Small,Mono)l;
End; {of Process_Window_Menul

Frocedure Init_Window_Info:
{This procedure initializes all the of data used by the
windowing routines’

Var Regs:Registers;

Begin

Iintr(#11,Regs):

Mono:=(Lo(Regs.AX) and #30) = $30;

If Monc then

Screen:=Ftr ($RO00,0)
else
Screen:=Ftr ($EB00,0) ;

Active_Window:=Nil:

Screen_Temp:=Screen:

Window_Fixed_Part:=Sizeof (Window_Control_Elocki

- Sizeof (5creen_Block);
If (MemAvail < 0O) or (MemAvail » Sizeof (Screen_Array)+100) then
{ Changed per upgrade to accomodate TF 4.0 MemAvail ?
New (Screern_New)
else
Screen_New:=Nil;

Window_Count:=0;

Erd; {of Imt_Window_Infol
BEGIN
ERD.

(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

REEFRERERXAXERERFEREF End Edwards Encerpt #EEriririsisiiissises)

242

-~

APPENDIX Z

SOURCE LISTING FOR UNIT XMODM

¥

CF 909969696 FE9 36 36364606 363600 JE 396 3636963360 T I3 T T2 06 T30 36330 06363696 3396 360606 36696 3636 36 3636 36 9636 96 96 ¢)
(%% %% XMODM. PAS *HAH)
(#%## This is the unit that abstracts all packet and file HRH*)
(#%%% transfers for the Xmodem protocol. The interface is *H%%)
{(x%%* derived from the Turbocom.com program in the first *HE¥)
(x%#%% reference, however, the implementation has been rebuilt #*%##)
(¥*%* {for command and data transfer from the second source. *H*%)
€22 %% %)
{#%%% References: Edwards, C. C., Advanced Techniques in Turbo ##¥x#)
€22 24 Fascal, pp. 220-275, Sybex, Inc., 1987 *HEH)
(#%*% FEER)
(#%%% ¥rantz, D., "Christensen Protocols in C," *HEE)
(%% %% Dr. Dobb’'s Journal, v. 10, no. 6, pp. 66-BTF, #¥%¥)
(F%¥E¥F June 1985, *HER)
(%%x¥ W)
(#%%% Mpodified by Nelson Ard REHE)
(#xnn XEEH)
{»*#% | st Modification: Sep 89 *HHE)

(FFERER TS FRFERRRRFRF TR RFE RN IR T I F NI I I 26396 3933 J X RN)

UNIT Xmodm;

INTERFACE

USES Miscpack,

¢ 13 Jun

19 Jun

22 Jul

g9

89

ge

gs

89

0
43

Generxl, Wndow, Dstacom, Support, Cri;

changed status variable to enumerated data type for
clarity changed Send_Record, Receive_Record to
independant procedures (callabie by outside processes)
eliminated global variables, moved formal declarations
for command packet building blocks into Interface
section

added Respond_hy file

added a variable to control transfer monitor windows

extendecd variable Monitor_transfers to include the
Update_status and the monitor window

gated ReadAu: and Writefu: to show only data characteres
changed Respond_by_file to $function to obtain status

~aA™
247

broke long resync problem with Command_Xfer syncing on
CAN character from master and resetting after 10 block

errors X

(HEREREXREREXERERRSEE Start Edwards Excerpt #EEEEeeediiiiiniiis)

CONST
CEE = #%473;
TYFE
Result = (Rx_sync, Waiting for sync

R:x_done, completed
Ry _ACH, Good Ry, within retrymax
Rx_old_ACK, Good Rx, old block
R _EOT, Good Rx, EOT char
Rx_junk, Garbage on the line

R:_timeout,
Ry _errors,
Ru_lost_block,

nothing heard
Bad Rx, retrymax exceeded
Bad Rx, out of sync

NP oy T e O Y O N ey T ey P ey e et Y ey M ey e
Lo T O W R I S R T L W R Wy T I R

Ry _NAK, Rad R, NAK sent

Ri_CAN, Good Ry, CAN char

R« _keypressed, keypressed detected

Ty _gync, Waiting for sync

Tx_done, completed

T _ALCH, Good Tx, within retryma:
T« _CEE_sync, Good Tx, CRC sync rxd

T _EDT, Good R, EBT char
Tu_timeout, nothing heard

T _errors, Bad Tx, retrymax exceeded
Tr_NAK_sync, Good Tx, cksum sync rxd
T _NAE, Bad Tx, NAK received

T _CAN, Bad Rx, CAN char received
Tw_Junk, Trash on the receive line
!

v _keypressed) Keypressed detected

-.

VAR Suppress_ECT,
Suppress_CTAaN,
Monitor_Trensfers : boolean;

FUNCTION Sync_Feceive (seconds : integer:
sync_character : char) : result;

(# FReprinted with extensive modific..ions fram Advanced Techniques in
Turbo Fascal by Charies Edwards, by permission of Sybex, Inc.
Copyright 1927 Sybex, Inz. All rights reserved.

HEFARE SR RPREF 224 ¥5 4% Continue Edwards Excerpt #EEXeiirsiiifridssss)

&

(E*EXXEEXEXXXEXERRR2E Continue Edwards ExcCerpt #E#EEEeisiiieds®esss)

FUNCTION Receive_Record (VAR Buf : Buffer; blocksize : word;
seconds : word; expected_block : word;
VAR errors : byte) : result;
FUNCTION Sync_Send (seconds : word) : result;
. FUNCTION Send_Record (VAR Buf : Buffer; blocksize : word;
seconds : word; block : byte;
VAR errors : byte) : result;
PROCEDURE Send_EOT (VAR status : result)
PROCEDURE Send_CAN;
PROCEDURE Transfer_File (Send : Boolean);

Function Command_Xfer (Send:EHoolean; VAR buf : buffer;
BlockSize: Integer) : result;

FUNCTION Respond_by_file (Response : pathstring) : result;
Frocedure Send_String (§ : String);
Functior Get_response (BlockSizeslInteger) : result;
Frocecure string_to_buf { s : string; VAR buf : buffer)
¢ Converte 2 string 1nto an ¥modem buffer X
Function buf_to_string { VAR buf : buffer) : stringliZB:
i Converts an Xmodem buffer into a string X
TMF_EMENTATION
COMET timeogut = 256

Retryms.: = 104

TYRE
Xmodem_Frame = ARRAY (1..4] of Char;

(¥ FReprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FEEEFEFFEXR XX ERFRAXHE COrntinue Edwards Excerpl HErirsdiifriirxsiiriss)

(HHEREREXXXXRXAREXRRERE CONtinue Edwards Excerpt Seessieridsdiriitins)

Const Xmodem_Status:Array [R:_sync..Tx_keypressed] of Stringl17] = (

‘Rx_sync Waiting for sync

‘Rx _done completed

‘Rx_ACK Good Rx, within retrymax
‘Rv_old_ACK Good Rx, old block

‘Rx _EOT Good Rx, EOT char
‘Ry_Jjunk Garbage on the line

nothing heard
Bad Rx, retrymax exceeded
Bad Rx, out of sync

‘Rx_timeout
‘Ry_errors
"R _lost_bleck !

‘R _NAE Bad Rx, NAK sent

‘R« _CAN Good Ry, CAN char
‘Ru_keypressed keypressed detected
“Tu_sync) Waiting for sync

‘Tx_deone completed

‘Tw _ACK Good Tx, within retryma:
‘T _CEE_sync Good Tx, CRC sync rud
‘Tw_EOT Good Ry, EOT char
"Tu_timeout ‘ nothing heard

‘Tu_errors Bad Tz, retrymax exceeded
‘Tx_NAK _sync Good Tx, cksum sync rid
“Ty _NAY Rad Tx, NAK received

‘T _CAN Bad Rx», CAN char received
‘Tu_Jdunk, Trash on the receive line

B N T e T T e e N e T e TN NP L R
[O S I T P B P O W I N L LT R WL e e

PR © e s “« s N P
R T R R v T IR IR R Y R T N T T I R

‘T _keypressed Keypressed detected

VAR
CRC : Eoclean:
Xfer_File : File;
Status_ID, Monitor_ID:Byte:
Moritor File:File of Charg
Boffr r buffer;
monitcr_gate : boolean;

CROCEDURE etring_to_buf (s : string; VAR buf : buffer)j

{ Converte a string into an Xmodem buffer 3

VAR inde: : byte;

BEGIN

FOR index := ! TO Length (s) DO

buf [index 2 1= = [index 1;

(# Reprintec with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permissior of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved,
EREFEEFERFFRFEFE22+4> Continue Edwards Excerpt #E¥Exixissidiidiiiis)

24¢

(ERRXXRFXXRXREXEREXNEE CONtinue Edwards EXCerpt ###Esaisisiieeieinss)
FOR index := Length (s) + 1 TO 128 DO
buf [index] := Char (NUL);
END;
FUNCTION buf_to_string (VAR buf : buffer) : stringl28;

{ Converts an Xmodem buffer into a string J

CONST SFRCE
TILDE

non

~y
VAR s : stringlZ§:
index : byte:

BEGIN

FOR index := 1 TO 128 DO
IF buf [index 1 IN [SPACE .. TILDE 31 THEN

¢ 1= ¢ + buf [index]
ELSE € 1= 5 + SFPATE;
buf_to_et-ing := =g
END;
FUNCTICN ReadAux ! seccnds : word) @ words
VAR ! wora;

-
Ch 1 charg

BEGIN
l:=seconds * 1000;
While ((not RS2Z2_Avail) and (I > O) AND (NOT kKeypressed)) doc BEGIN
Delay(l):
DEC(I):
End;
If RSZIZ_Avail ther BEGIN
Ch := R32IZ2_In;
I+ (Mornitor_ID * O) AND (monitor_gate) then Begin
TexztColor (Foreground);
TertBackground (Background);
Case Byte(Ch) of
NUL,EBEL,BS,LF ¢ { suppress 3
¥20 .. ¥FF : Write (Ch)3
Cr : Writeln:

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwardsz, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

AEFEEXREFFRRSEEFSH2F2¥y Lontinue Edwards Excerpt ###Esdirdiirxiiriss)

247

(Freerenxgeasennennndr Continue Edwards Excerpt Freeiddeiieiieiidess)

End; {of Case)
Write(Monitor_File,Ch};

End;

ReadAux 3= DRD(Ch);

End

else
ReadAux := Timeout;
End; {of ReadAu:’

Frocedure WriteAux (Ch:Char);

Begin
RE2Z2_0ut (Ch) ;
If (Monitor_ID > &) AND (monitor_gate) then
Begin
TextColor (Background)
TextBackground (Foreground)
Case Byte(Ch) of
NuUL,BEL,BE,LF : { suppress
$20 .. ¥FF i Write (Ch
(S : Writelns
cndy {of Casel
Write{Monitor_File,Ch);
End: tbeginl
End: {of WriteAuu?

— s

- ue

Procedure Send_String (S : String);
VAR inde: : word;

SEGIN
IF tergth (S) » ¢ THEN BEGIN.
FOR index := 1 TD Length (S) DO
RE2Z2 _ Out(S [index 1 13
RS27Z2_0ut (Char (CRY)
END;

END;

FUNCTION Receive_Record (VAR Buf : Buffer; tlocksize : word;
seconds : word; expected_block : word:
VAR errars : byte) @ result;

{# Reprintez with extensive modifications from Advanced Technigues in
Turbc Fascal by Charles Edwards, by permissicn of Sybex, Inc.
Cozyright 19287 Sybex, Inc, All rights reservecd.

FEFEFAFFEFEFAEFEF R4 COntinue Edwards Excerpt F¥ itk sff®xfxeixss)

248

(FEEXFEFERXXEERXEEX%* (CoOntinue Edwards Excerpt 33363 969 39 36 9 0 3 96 3 6 26 K)

VAR
temp : word;
I : word;
checksum : byte:
Frame : Xmodem_frame;
Ch : Char;

BEGIN
Ch:=Char (NUL)
errors := 0

CASE ReadAux (seconds) OF

SOH : BEGIN
monitor_gate := false; { turn off monitor display 3
For 1:=2 to 3 do
Frame [I] := Char (Lo(ReadAux(seccnds)));
Checksum: =03
monitor_gate := true; { turn on monitor display >
For I:=1 to BlockSize do
Begin
Eué [IJ := Char(lLo (ReadAux (1)2);
Checksum:= (Byte(Checksum)+Byte(BuflIl)) MOD 256;
End;
monitor _gate := false: I turn off monitor display
Frame [4] := Char(LofReadAuxi 1))):
14 (Byte(FrameiZ]: <> (2S55~-Byte(Framel31))) or
{Char (Checksum! <> Framel4]! then
Becin {Error on datacomm line?
INC(Errorsi;
wWriteduy (Char (NAK)) 3
Receive_Record := Rx_NAK;

Erd
elze if Byte(FramelZ2]) = expected_bicck then
Begin {Bloci numbers match:

Errore:=0;
Receive_Reccrd 1= Ru_ARDK;

i¥ Byte(Framel[Z]) = (expected_block-1) then begin
Receive_Record := Ru:_old_ACK;

INC (Errors)i

Writefuw: (Char (ACK)) <01d bleock resent...ACk it;

END

{#* FReprinted with extensive modifications from Advanced Techniques 1n
Turbo Fascal by Charlees Edwards, by permission of Sybex, Inc.
Zopyright 1987 Syvker, Inc. A!l rights recerved.

FEFEARFRRFERFFEFH2¥%x Contin + Edwards Excerpl #EFssiiisfiiaxirkrsix)

ra
4

(HRRREFEXEFXRFEXRRER® Continue Edwards Excerpt FHE 2696 9696696 96 6 06 IR)

else
Begin iWe lost a block?
Receive_Record := Rx_lost_block;
End:
End; {SOH

CAN : FReceive_record := Rx_CAN;

Timeout ¢ Receive_record Ry _timeout;

n
pal

EDT : Receive_record » _EOT;

else Receive_record := Rx_junk;

END: ¢ OF CASE *
END: {Receive_Recaord:
FROCEDURE Bet_EBuffer (VAR buf : buffer; blocksize : word);

VAR
Numread : word:
index : word:

BEGIN
ElockRead {Xfer_File, buf, blocksize, Numread);
IF Numread < blocksize THEN
For inder := Num-ead + 1| to blocksize DO
Buflindesl 1= CHAR(ORD(O) };

FUNCTION Send_Recorc { VAR Buf : Buffer; blocksize : word:
seconds ¢ word: block : byte;
VAR errors @ byte) : result;

VAF
Numread,
Numwritten @ word;
1nde: !oworgs

checksur : bvyie:
Ch : CHAR;

{(# FReorinted with evtensive modifications from Advanced Techniaques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Svher, Inc. All rights reserved.

FREFXFFFERFAAFRRFF¥F> [ontirue Edwards Excerpt SEXxadsii@irsrigtiiiiss)

(Fxeerrrrrxnrnenniidx Continue Edwards Excerpt #%#%¥E%EEERIEEEERHE)

ending_char : char;
quit : boolean

BEGIN
monitor_gate := false; { turn off monitor display }
Errors 1= Q;
checksum = 03
FOR index := 1 to blocksize DO
checksum := (checksum + ORD (Buf [index])) MOD 256;
Regin
IF blocksize = 128 THEN WriteAux (Char (SOH))
ELSE WriteAux (Char (S0H));3;
WriteAux (Char (Block))j
WriteAur (Char (255-Block));
monitor_gate := true; { turn on monitor display >
For index :=1 to blocksize DC
WriteAux (Bufiindex 1)
monitor _gate := false; { turn off monitor display ?
WritefAux (Char (checksum 1)
Furgeline:
CASE ReadAu: (seconds) OF
ACH t Send_Record := Tx_ACkK;
NAE 1 Send_Record := Tx_NAE;
CAN : Send_Record := Tu_CAN;
Timeout : Send_Recocrd := Tx_timeout;
ELSE Send_Record := Tu_dJdunk;
Encd: {caser
IF Feypressed THEN Send_Record := Tu_hkeypressed;
END: {repeatl
Erc:

FUNCTIDN Sync_FReceive (seconds @ integer;
sync_character : char) : result;

(¥» Reprinted with extensive modifications from Advanced Techniques 1n
Turbo Fascal by Charles Edwards, by permission of Sybe:, Inc.
Topy-ight 1987 Syber, Inc. All righte reserved.

¥FF# ¥R RREFFFEEFEFIF#FF COntinue Edwardszs Ercerpt SR rxffiixsiriiiss)

(#FREXFXFRXRREXERER6% Continue Edwards Excerpt HEssitsediirtdeis®s)

VAR
I
tries : integer;

BEGIN
FurgelLine;
WriteAuy (sync_character); { try immediately I
tries := TRUNC (seconds /5 + 0.6); {convert seconds to cycles X
WHILE ((not RS232_Avail) and (tries » 0)
and (NOT keypressed)) do BEGIN
WriteAux (sync_character);

I := 1000,
While ({(not RSZ3IZ_Avail) and (I > O) and (NOT keypressed)) do
Begin;
Delay(§) { 10 ms * 1000 cycles = 10 seconds 3
DEC (I)
End;
DEC (triecs);
END;

IF Keypressed THEN
Syrnc_Receive = Ru_keypressed
ELSE IF REZIZ_Aveil THEN BEGIN

IF RE2I2_peek <> Char (CAN) THEN Sync_Receive := Rx_sync
ELSE Sync_Receive := Ry _CAN;
ENT:
ELZZ Sync_Receive := Rx_timeout;

END;
FUNCTION Sync_Senc (seconds : word) @ result;

VAR
guit : bcolean;

Begir
guit := FALSE:
Repeat
FurgeLine;

{# FReorinted with extensive modifications from Advanced Technigues in
Turbo Pascal by Charles Edwards, by permission of Sybe:, Inc.
Copyright 1967 Sybe:. Inc. All rights reserved.

FEPEEFEFPRFFERFIFFFFFF Continue Edwards Edcerpt #¥xisrrsrrrriirsasiss)

(#EFREFXREXRRXXXXRR¥% COntinue Edwards Excerpt #EEEsssiisisitiiisss)

CASE ReadAux (seconds) OF
CEE : BEGIM { checksum handshake }
CRC := TRUE;
Sync_Send s= Tx_CEE_sync;
quit := TRUE;

END;
NAk : BEGIN { checksum handshake }
CRC := FALSE;
Sync_Send := Tx_NAK_sync;
quit := TRUE;
END;
Timeout : BEGIN
Sync_Send := Tx_timeout;
guit := TRUE;
END:
CAN : BEGIN
Svync_send := Tx_CAN;
quit = true;
END:
EL 5E BESIN
Syrc_send := Tx_junk; {Garbage o~ the linel
END:

End; {CASE
UNTIL (gquit) OR Keypressed:
IF keypressed THEN Sync_Send := Tu_Keypressed;

FROCEDURE Send_EOT (VAR status @ result)
VAR errors : byte:

BEGIN
IF (Suppre
gtatu=z 1=
ELSE EBEGIN
Errors 1= 03
REFEART
WriteAux (Char (EOT))g
INC (Errors):
UNTIL (ReadAux (10) = ORD (ACK)) OR (Errors = Retrymax)i

e
T

£3T) THEN
_done

{+ Reprinted with extensive modifications from Advanced Techniques in
Turbc Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reservec.

FREFFAEFAFREF AR FARREE [Cntinue Cdwards Excerpt #¥aisirasrisihsissss)

(#¥FXEXEEF XXX XX XX2E Continue Edwards Excerpt #EErsssssidsstresnss)

IF Errors = Retrymax THEN
Status := Tx_timeout { timeout on EODT 73
ELSE status := Tx_done;
END
END;

PROCEDURE Send_CAN;

BEGIN
IF NOT Suppress_CAN THEN BEGIN
WriteAux ¢ char (CAN));
WriteAux (char (CAN));
END;
END;

Function xmodem_Xfer (Send:Roolean: EBlockSize:lInteger) : result:
{This procedure performs an Xmodem file transfer

Input: Send - True to send =z file
False to receive a file

EBlockSize -~ The block size to use for the file transfer

VaF encing_char : char:

Xfer_Type:Stringlél;

done,

Ahort:Booleany

Statusz & result;

Ch s Char;g

Errors,

Settings,

Block_Count : byte;

I,

bloct.,

inde:,

Blocks,

Numread,

Error_Count : words;

Byte_Count: Longint;

buf : buffer;

Frocedure Update_Status;
Var Il:Integer;

3
4

(¥ Reprinted with extensive modifications from Advanced Technigues 1in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Svbex, Inc. All rights reserved.

ERREEXEFFAFREEXEX¥#¥E Continue Edwards Excerpt HEEidediardiiiiriiisss)

[
[&]
£

(HERFXEFXXHEXEXERAX%%% Continue Edwards Excerpt 39 3 36363 3 I 3 3 I 9 3% 3 3% % % W % %)

Begin
If¥ Monitor_ID » O then begin
If Get_Window(Status_ID) thenj
For 1:=2 to 5 do Begin
GotoXY(11,1);

ClrEol;
Case [of
2: MWrite(Xmodem_Status[Statusl);
J: Write(Blocks);
4: Write(Byte_Count)
S: Write(Error_Count);
End; {of Case)
End;
1¥ Get_Window(Monitor_ID) then;
END;

End; {of Update_Status}

Begin

I¥ Monitor_Transfers THEN
Begin
I1f¥ Open_Wirdow(1,8,80,24,Flag_Borders, ‘Monitor Window'}) = 0 then;
ClrsScr:
Writeln('Opening monitor file’!:
Monitor_ID:=Active_Window™.1D;
Assign (Monitor _File, "MONITOR.DAT ")
Fewrite(Monitor File)
End

eise
Beg:r
Monitor_ID:=0;

End:

Xfer_Type:="Xmodem':

-

7 Oper the Status Window >

If Open_Window(40,1,80,7,Flag_BRorders,Xfer_Type) = O then;
Status_ID:=Active_Window™, 1D;
ClrScr;
For 1I:=1 to S do
Begin

GotoYY (1,1}

(# Reprinted with ertensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. 11 righte reserved.

FREERFERRRRSEFFE3395 Continue Edwerds Excerpht #esssdssissrdsrrissss)

lon] —a =4

-

(HREXEEXEXERXXRXXXEX® COntinue Edwards Excerpt #%ekisiiieesiess)

Case I of

Write(Name
Write(’'Status
Write('Blocks
Write(Rytes
Write('Errors
nd; {of Casel

AL I S I o

End;
RS_Eight_Rits; { make sure we can pass eight data bits 3
Blocks: =03
Byte_Count:=0;
Errors:=0;
Error_Count:=0;
Block_Count:=1;
Abort:=False;
If Send then
Begin {Send the file’
Status := Tu_svncy { Holding for start I
Update_status;
Status = Sync_Send (10)

I+ Status = Tu_kteypressed then Ch := Readkey;
Update_status;
IF Statue = Tu_kKeypressed THEN
{ keep status same
ELSE IF NOT {(Status IN [Tx_CEE_sync, Tu_NAK_syncl) THEN BEGIN
Writeln ('No acknowledgement from other side’);
{Statuz 1= T:_timeout:’
Update_ Ctatus;
END
ELSE
BESIN
done := +alse;
Wrile rot {Eof (Xfer_File)) AND NOT (done) do
Begir
Update_Status:
Get _Bufter (buf, blocksize);
status := Send_Record {(Buf, ERlocksize, 10, block_count,
errors);

(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fazcel by Charles Edwarde, by permission of Sybex, Inc.
Copyright 1927 Svhew, Inc. All rights rese-ved.

FEEFFERFEERERSFRFE2es Cortinue Edwards Encerpt #E¥sirisifriridiiiis)

(RREXERXFXXREXNREXR%E COrtinue Edwards Excerpt #EErskesiidsiidiiiis)

CASE Status OF
Tx_ACK : BEGIN
Error_Count := Error_Count + Errors;
INC(Blocks);
Byte_Count:=Byte_Count+BlockSize;
INC(Block_Count);
END;

Tx_NAK : BEGIN
INC(Error_count);
If Error_count »>= retrymax then done := true;
END;

TX_timeout : BEGIN
INC(Error_count):
If Error_count = retrymax then
done := true;

End;
T:_CAN,
Tx_keypressed ; BEGIN .
done := TRUE;
END;
ELSE BEGIN
INC(Error_count);
I¥ Error_count = retrymax then
Begin
done := true;
Status := Tx_errors;
End;
END;
END;

Update_Status:
End: {WHILEY
Whiie KeyFressed do
RBegin
Ch := Readkey;
End;
END;
1f Status = TX_ACE then Send_EOT (status)
ELSE Send_CAN;
END

(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FREFXRRRFFRBEERHXHE3> CoOntinue Edwards Excerpt S s¥ssdidsdfaissses)

(ERERFXRXXEXEXEXXRHXE Continue Edwards Excerpt HEEkrefiiedfiirifies)

else

Begin {Receive file?

Status:=Ru_sync;

Update_status;

Status := Sync_Receive (60, Char (NAK));

CASE Status OF

Rx_FKeyFressed : Begin

Abort := TRUE:
Update_status;
Ch := Readkey;

End;
Ry _timeout,
R _CAN : BEGIN
Abort := TRUE;
Update_Status;
END;
ELSE Repeat

Status := Receive_Record (Buf, blocksize, 1,
Block_count, errors):
CASE Status OF
R:_ACK : BEGIN
INC(Blocke);
Byte_Count:=Byte_Count+BlockSize;
INC (Block_Count)3
BlockWrite(Xfer_File,Buf, blocksize });
END;:
v junk,
¥ _timeout,
«_0ld_ACK : BREGIN
INC { Error_Count);
IF Error_Count : retryma: THEN
abort := TRUE;
END;

m

Rx_EOQT : BEGIN
Status := Rx_EOT:
END:

ELSE BEGIN

Error_Count := Error_Lount + Errors;

IF Error_Count > retrymax THEN abort := TRUE;
END;

END; {CASE}

{# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permissiorn of Svbex, Inc.
Copyright 1987 Sybew, Inc. A1l rightz reserved.

FEFEEFREFEFFRFF PP XS Lortinue Edwards Excerpt i iadiiisixiisriss)

[
[4))
m

(Exnxenixnnnxnnier Continue Edwards Excerpt S#%E#38E%E%%EHERER1R)

Update_Status;
I¥ not Abort then
While KeyPressed do
EBegin
Ch := ReadKey;
Abort:=True;
Status:=Rx_keypressed;
End;
Urntil (Status = Rx_EOT) or Abort;
END; { CASE ?
I¥ not Abort then Status:=Rx_done;
Update_Status;
If Status <> Rx_done then
WriteAux (Char (CAN))
else
WriteAus (Char (ACK)) ;
End;
Xmodem_Xfer := status;
CloseiXfer_File);
1+ ‘not Send) and (Abort) then
Erase{Xter_Fiie);

{ Close the Status window 2
R5_Restore (Current COM 1: { restore comport settings to whatever
was selected before I
I+ Close_Window then:
14 Moniter_ID * O then
Eegin
if Close_Window then: { Close the monitor window if open
Textcolor (Foreground);
Tertbackground (Background; ;
Close{Monitor File’:
Monitor_IL = O
End:
Erd; {cf Xmodem_Xfer:

Function Command_Xfer (Send:Boolean; VAR buf : buffer;
BlockSize:Integer) : result;

{This procedure performs an command/response exchange

Input: Senc - True to send & buffer
False to receive buffer

(# BResrinted with entensive modifications from Advanceo Techrnigues in
Turbo Fascal by Charles Edwarde, by permission of Sybex, Inc.
Zopyright 1987 Syber, Inc. A1l rigtts reserved.

FEIFREFFREFIFHEFFFEFFr Continue Edwards Ercerpl #E3asdsrxidrr¥sixrss)

(ReEERFEEREXFRXURXA%E COntinue Edwards ExCErpt SExrssdidsiriixi®iis)

BlockSize - The block size to use for the transfer

S
¥

VAR ending_char : char;
Xfer_Type:Stringl181;
done,

Abort:Boolean;
Status : result;

Ch : Char;

Errors,

Settings,
Biock_Count : byte;
I,

inde:x,

Blocks,

Numread,
Error_Count @ word;
Byte Count: Longinti

Frocedure Update_Ctatus;
Var I:integer:
Begin
1£ Moritor_ID » O then begin
14 Get_Windowi!{Status_ID) then:
For 1:=2 to 5 do Begin
DotoXY (11,1

e
LareQig

o=y

-

-

I of

oY
1]

se
Z: Write(Xmodem_Status[Statusl);
J: Write(Blocks):
4: Write(Byte_Count):
S: Write(Erroar_Count);

End; {of Casel
End;
I+ Get_Window(Monitor_ID) then:

END:
End; {of Update_Statusl

Begin
I¥ Monitor_Transfers THEN
Regir
I+ Open_Window(1,8,80,24,Flag_Borders, 'Monitor Window') = O then;

(» Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

#FxEFFFeExrrerar¥sx% Continue Edwards Excerpt S#¥Rsiifiixsiisssrxsss)

260

(HXFEXERRERRREERERRER COntinue Edwards Excerpt #Eeeeisdsiediedesens)

ClrScr;
Writeln('Opening monitor file');
Monitor_ID:=Active_Window™.1D;
Assign (Monitor_File, '"MONITOR.DAT ")
Rewrite(Monitor_File);
Xfer_Type:='Command Transfer ';
1f Open_Window(40,1,80,7,Flag_Borders,Xfer_Type) = 0 then;
Status_ID:=Active_Window™.ID;
ClrScr;
For I:=1 to 5 do Begin

GotoXY(1,1);

Case I of
1: Write(' ")y
2: Write('Status :7)j
31 Write('Blocks :');:
4: Write{'Bytes HA
St Write('Errors :');
Ernd; {of Case?
End;
End
else

Monitor_ID:=0;
RS_Eight_Bits; { make sure we can pass eight data bits i
Blocks 1= O
Errors 1= 0
Byte_Count:=0;
Error_Count:=0;
Elozt _Count:i=1;
Atort:=False;
if Send ther
Begin {Send the command}
tatus 1= Tx_syncy { Holding for start }
Update_status;
tatue 3= Sync_Send (10)j

If Status = T _keypressed then Ch := Readkey:
Update_status;
IF Status = Tx_Keypressed THEN
{ keep status same I
ELSE IF NOT {(Status IN [Tux_CEE_syrc, Tu_NAK_syncl) THEN BEGIN
Writeln (’No acknowledgement from other side’);
{Status := Tu_timeout;?
Update_Status;
ND

(* FReprirted with extensive modifications from Advanced Technigues in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyrigh< 1987 Sybex, Inc. All rights reserved,

FREEFERFARxF#E2ax¥+ Continue Edwards Excerpt #EEpesddrxfrrrsrtisx)

[l
o
v

rlllIIlllIlIIlIIIIIlIIIIllIllIIIlIIlIIIIIllIllIlIIlIIIIIIIIIIII-----F*

ELSE
BREGIN
done := false;
REFEAT
Update_Status:

errors);
CASE Status OF

Tx_ACK : BEGIN

done := true;
END;

Tu_NAiL @ BEGIN
INC(Error_count);

It Error_count = retrymax then done

END;

TY_timeout ¢ BEGIN
INC(Error_count);

If Error_count = retrymax then

done = true;
End:

T _CAN,

Tr _bayoressed @ BEGIN
Writeln('aborting ')
done := TRUE;

END3

ELEE BEGIN
INC{Error_count):
If Error_count »= retrymax then
EBegin
done := true;
Status 1= Tx_errors;
End;

END: {Caze

grror_Count := Error_Count + Errors;
Byte_Count:=Byte_Count+BlockSize;

(FXEREXFEXREEXEXXXAXAX* [Continue Edwards Excerpt 39 3 36 9 36 96 3 36 3 I 3 3 3 I I 3% % %)

status := Send_Record (Buf, Blocksize, 10, block_count,

1= true;

(# Reprinted vw:th entensive modifications from Advanced Techniques in
Turbc Fascal by Charlec Edwards, by permission of Sybex, Inc.

Copyright 1987 Svher, Inc, All righte reserved.

PrEXRFFEFERIIRreraaFe Corntinue Edwarde Excerpt #EEXSrididddsisagsss)

262

(HEERAEEFEXXXEx%%*%%% Continue Edwards Excerpt 3933 3 3 963 36 9 96 3 3 3 9 3% ¥ 4% %)

UNTIL done:
While KeyFressed do
EBegin
Ch := Readkey;
End;
END;
Update_status;
If Status = TX_ACK then BEGIN
Send_EDT (status)j
status := Tx_done;

END
L SE Send_CAN;
END
else
Begin {Receive filel

Status:i=fx_sync;
Update_status;
Stztus := Sync_Receive (&0, Char (NAK));
CASE Status OF
Ry _FKeyFressed : BEGIN
Abort := TRUE
Update_status
Cr 1= Readley

»
.
.
*
»
s

Ends
Rr_timeoat,
Ao _CAN : BEGIN
Abort := TRUE;
Urdate_Status:
END:
ELSE Repeat
C+atus 1= Feceive_Record (Buf, blocksize, 10,

Bloct _count, errors 1:
CASE Status OF

R _ATH : BEGIN
Byte_Count:=Byte_Count+BlockSize;
END;
R _Junb.,

R _timeout,
Ry _Cld_ACk : BEGIN
INC ¢ Error_Count):

{# FReprinted with e:tensive modifications from Advanced Technigues 1n
Turtc Fascal by Craries Edwards, by permission of Syber, Inc,
Cozyright 1937 Sybew, Irz. ALl righte reserved.

Presrrrsrresannanrary [ortirue ECwarcds Excerpt Sassssaxsddadrrsipsss’

(FXEEXXXEFRXRRRE*2XR2E Continue Edwards Excerpt #EEeedes i iiiissx)

IF Error_Count » retrymax THEN
abort := TRUE;

END;
Rx_EOT : BEGIN
Status := Rx_EDT;
ENDj
ELSE BEGIN

Error_Count := Error_Count + Errors;
IF Error_Count > retrymax THEN
abort := TRUE;
END;
END; {CASE}
Update_Status;
I+ nct Abort then
Wwhile keyFressed do
Begin
Ch := Readkey;
Abort:=True;
Status:i=R:_keypressed;
End;
Until (Status = Rx_EDT) or Abort;
END; { CASE i
If nect Abort then Status:=Rx_done;
Undate_Status;
I+ Status 7 Rx_done then
Writefuy (Char (CANY)

elce
WriteAus (Char (ACK)) ;
End: { Receive 2
Commard_Xfer := status;

se the status window ¥

i tore comport settings to whatever was selected before !
RS_Festore (Current COM):
If

mw O

Moritor _ID - @ then 7 Clcse the monitor window °
Eegir

1f Close_Window then;

If Close_Window ther;

Te:tcolor (Foreground! g

Te:tbaclground (Background) ;

Clzze(Monitor _Fileis

Monito- _ID 1=

Rerrinted with extensive modifications from Advanced Techniques in
Turbe Fascal by Charles Edwards, by permiscion of Sybe:, Inc.
Zopyright 1937 Svbe, Inc. All righte reserved.
#pernryrssriixsrsanrd [ontinue Edwards E:Cerpt #Eesrsrissssisssrsss,

264

(HEAXEXEEREXEXEX*EX%** Continue Edwards Excerpt (222223 TRTITTTITRTE L L)

End;
End; {of Command_Xfer:

Frocedure Transfer_File(Send:Boolean);
{This procedure initiates a file transfer

Input: Send - True if we want to send a file
False to receive a file

Var FileName : Long_String;
I,J:Integer;
Abort:Boolean;
status : result;

Begl r
Abort:=False:
I+ Dpen_Window(20,16,60,19,Flag_Borders, ‘Name’) = 0O then;
CirScr;
Write('File Name: ');
Readln(FileName);
I Close_Window then:
IF (Length (FileName) = 0) or (FileName = ~F) THEN
{ do ncthing 3
ELSE BEGIN
For J:=1 to Length{ FileName) dc
FileName [J1 := UpCase! FileName [J]);

Assigrn (Xfer Tile, FileName };
I+ Senz then Begin
{F1-2
Feset {Xfer_File, 1)
{FI42
14 I0Result : O then Begin
NoFile(FileName);
Abort:=True;
Enc:
End
else

Rewrite(Xfer_File, 1);
If not Abort then status := Xmodem_Xfer (Send, 128):
END;
End; {of Trancfer Filel

{# Reprirted with extensive modificatione from Advanced Technigues in
Turbo Fascal by Charlecs Edwards, by permission of Sybe:, Inc.
Copyright 1987 Sybe., Inc. &l1 rights recerved.

F2¥eRu*3s822¥o2s0+%r [ortinue Edwarde Evcerpt #E3fssssdissnyssssss)

bl
-y

(HREEEXEXERRERXRERNAE COntinue Edwards Excerpt #eriieisedeissies)
FUNCTION Resuond_by_file (Response : pathstring) : result;
{This procedure provides the user a response contained in a file

Input: Response - the complete path specification for the file
Y

CONST Send : boolean = TRUE;

Var
Abort:Boclean;

Begin
Abort:=False;
Assign (Xfer_File, Response);

{$1-2
Reset (Xfer_File, 1);
{FI+3
I+ I0Result > O then
Beg:in

NoFile(Response);

Abort:=True;

Ernd;
i¥ not Abort thern Respond_by_file := Xmodem_Xfer (Send, 12B)
ELSE Respond_by file := Ti_CAN;

-

Erdy { Respond_by_file ?
Function Get response (BlockSize:Integer) : result:

e
{Thi

m

procedure performs arn Xmodem file transfer

input: Send - True to send a resconse
False to receive a series of responses

BlockSize - The block size to use for the file transfer

Status _ID, Monitor _ID must bte seer by WriteRu:, ReadAu:

V&R ending_char : charg
X$éer Type:Stringléd:
dore,

Ato-t:Eoolean:
Status @ result;

{# Reprinted with extencive modifications from Advanced Techrniques 1n
Turbe FPascal by Cha-les Edwards, by permissior of Syber, Inc.
Copyrigtt 1987 Sybex, Inc. All rightsz reserved.

REFFERFEIRFPFIFRFE+ER+ Continue Edwards Eacerpt EREERFRIEEBIRFFER NI R

ay-ya)

(®%EEAFHEEXEXEXR*%E%#% Continue Edwards Ex Cerpt F46 363 96 36 36 96 96 36 36 36 96 36 396 3 3 33)

Ch : Char;

Errors,

Settinge,
Block_Count : byte;
I,

block,

inde:x,

Blocks,

Numread,

Error_Count : word;
Byte_Count: Longint;
buf : buffer;
Display_Window_ID : byte;

Regin
Monitor_ID := Active_Window™.ID;
Assign (Monitor_File, "NUL")3j
Rewrite { Monitor_File)
{ Change teo current comms @
RE_Eigh%t_ERits; { make sure we can pass eight data bits 3
lockes:=0y

Byte Count:=0;
Errore:=0;
Error_Count:=0;
Elock_Counti=1;
Acort:=False;
Begin {Receive file}

Status:i=Ry _eync:

Status 1= Sync_Receive (&4, Char (NAE))i

CASE Status OF

R:_kevFressed : Begin
Abort := TRUE:
Ch := ReadVey:
=nd;

Ry _timeout,
R _CAN 1 Abort := TRUE;

ELSE Repeat
Begin
Status := Receive_Record (Buf, blocksize, 1,
Block_count, errors);

(¥ Reprinted with extencive modifications from Advanced Techniques in
Turboc Fascal by Charles Edwards, by permission of Sybe:, Inc.
Copyright 1987 Svber, Inc. Al] righte reserved.

¥ ¥R 3oy oanrr#r [Lontinue Sdwards Ercerpt #EEERRFARAEFXRESEFEER)

(W% HFXXFXEXEXRX*4*4%% Continue Edwards Excerpt 66 3 36 I I 96 3 3 I I3 3 I)

CASE Status OF
Rx_ACK : BEGIN
INC(RBlocks);
Byte_Count:=Byte_Count+BlockSize;
INC (Block_Count)j
END;
R _Jjunk,
Rx_timeout,
Ri:_0ld_ACE : BEGIN
INC (Error_Count);
IF Error_Count > retrymax THEN abort := TRUE;
END;

Rx_EOT : BEGIN
Status := Rx_EDOT;
END;

Rx_CAN : BEGIN
abort := TRUE;:
END;

ELSE BEGIN
Error_Count := Error_Count + Errors;
IF Error_Court » retrymax THEN abort := TRUE;
END;
END; {CABED
If not Abort then
While KeyFressed dc
Escin
Ckoe=
“tiETrues
Statusi=Rr _keypressed:

Zng;

Readkey:
Shoe y

D 1 Receive 3
drtil (Statues = Ri_EGT) or Aborty

If nct Abort ther Status:=Ru_done;
I¥ Statue < Rv_done then
Writep. (Char (CAND)
else
Writehu: (Char (ACK)) 3
End;
Get _Fesponse := status;

‘# Reprinted with estensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyrigh*t 1927 Svbes, Inc. All rights reserved.

REEFFAFFERESFEFFxFrr Continue Edwards Excerpt #EEEEEFEfrieixisiiss)

t
o
m

(REERFXEEEEXXEERREX*X [ontinue Edwards Excerpt ##serriiiiiiiiiirisrs)

{ restore comport settings to whatever was selected before 2
RS_Restore (Current_COM);

If Monitor_ID > O then
Begin
Textcolor (Foreground);
Textbackground (Rackground);
Close{(Monitor_File);
Monitor_ID := O

End;

End; { Get_response }

BEGIN

Suppress_EOT := FALSE;

Suppress_CAN := FALSE;

Monitor _Trarsfers := TRUE;

monitor_gate := false; { don't display xmodem packet headers }
END.

{# Reprinted with extercive modifications from Advanced Techriques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Cocyright 1967 Sybex, Inc. All rights recerved.

35 FRr s R4 ¥ FRFrry Fnd Edwerds Evcerpt S£3xditsrtxiakiriiss)

L)

APPENDIX AA

SOURCE LISTING FOR PROGRAM DISTRIB

Y
)

R T T e Ry I I Ty N I R S RIS
(%%%% DISTRIB.PAS HHER)
(¥%x%x# This is the main program for the Master/Slave networked #¥xx)
(##%x% computer system. The same program is used for both the ##x%)
{(#%#%¥ Master and Slave, with the function being selected from %¥*¥¥)

{(#*¥* the command line as follows: RE®R)
(X¥%% *HEX)
(##%% Master: Distrib Master (also allows program config FEE®)
(R%%% *HHE)
(¥%%% Server: Distrib Server FEER)
{H% %% %)
{(#*%% Reference: Edwards, C. C., Advanced Techniques in Turbo ##¥%)
{(%%%% Pascal, pp. 220-275, Sybex, Inc., 1987 FHHR)
(#%%% *HR¥)
{#%%#% Heavily modified from the terminal emulation program FHEE)
(#*#¥%¥ found in the reference. Converted to a Turbo Fascal 4.0 ##%)
(¥*%¥% program by Neleon Ard EHHH)
(%% ¥ HEEFE)
(#%%+ | ast Modification: Sep 89 *HEX)

(HEEFEFERFEEFREFERRREEREREERRHR RN IE RN RN KRR EEEREREEREXAER)

fication history
ep 8% - Replaced local RS2IZ write procedure with
DataCom.Send_String

(* Mad

%)

{ER+1 {Range checking on?

{¥B+] {Boolea~ complete evaluation oni
Mg 228 Stack checking on?

TEI43 {1/8 checking on;

{EN-2 tho numeric coprocessor’

{EM $5500,16384,65500> {Modified default stack and heap’
Frogram Distrib;

Uses
Datacom,
Crt,

3:5;
Wndow,
Xmodam,
Director,
General,

270

ErrorCod,
Support,
Printer,
Farser, Spawn, miscpack;

- (HEHHXRXXERXRREXRRR%XE Start Edwards Excerpt #ERssiisisiisirexiis)

Procedure Save_File(D:Eoolean);
- {This procedure asks the user if he wants to save a changed
configuration If so, it writes the appropriate file

Input D: True if saving default values
Falee if saving phone file
3
Var Configure:File of Byte;
Phone:Fhone_Record;
J:lnteger;

Begin
If Cper_Window(50,9,67,12,Flag_Rkorders, ') = O thens
ClrScr;
I1¥# D then

Write(’'Save defaulte?’)
else

Write! 'Save this entrv? i
I+ Yes{'Save’'} then

Eegir

ClrScr;

Write{ 'Saving...)i

. If D then
Begin
Assign (Configure,Defaults,Defaul t_Name);
{$1-2
Recet (Configure);
{EI+2
I+ IDResult O then
NoFile(Defaults.Default_Name!
El3E
Begin

ClrScry
Writeln(’'If vou want to use these parameters’);
Write!{ You must end and restart Distrib’);
k(") g
14 Close_Window then;
Eﬁd;

End

(# FRernrinteod with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permissior of Sybex, Inc.
Copyright 1987 Svber, Inc. 11 righte reserved.

FEEFBERFFpF Ry RERFF#¥ Continue Edwerds Evcerpt #Esiisssiisisdriassy)

rl-.-IlllI----IIlIllIlllI-.--IIIlIIllIll-III-IIII-I-I-----

(HEFEREEEERXXEXXXX%** Continue Edwards Excerpt 33636 36 3 36 96 36 36 3 36 96 96 96 36 36 96 4 9 ¢)

else
Begin
{F¥R-:

Assign (Phone_File, 'DISTRIB.PHN");

Rewrite (Phone_File);

For J:=1 to Fhone_Menu~.Length do
Begin
Fhone.Name:=Phone_Menu".Names{J]1;
Phone.Phone_Data:=Phone_Stuff~[J]1;
Write(Phone_File,Phone);

End;

Close(Fhone_File);

{$R+3
End:
End:
1f Close_Window theng
End: {of Save_File?

(V-2

Frocedure Write_AUX_String (S : STRINE);

{This procedure writes a string out to the currently selected COM port?
VAR inde: : byte;

BEGIN
FOF index := 1 TO Length{S) DD BEGIN
RS2I2_Out (Slindexd)y
END;
END:
CEV+D

Frocedure Dial_Phone(I:Integer; Demon_Dial:Boolean);

{Thic procedure dialis a phone entry. The demon dial feature 1c the
only feature of Distrib which explicitly assumes the presense of

& Hayes or Hayes compatible modem.

Input: I - The index intoc the phone array that we are to dial
Demor_Dial - true if we are to repetitively dial until an
answer is obtained

Var Court:Integer;
S:iong_String:
Ch:Char;g
{Connected:iBoolean:

‘# Reprinted with eutensive modifications from Advanced Technigues in
Turbo Faszal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights recerved.

RARFFEFFREERRFEFEEERE* (Continue Edwards Excerpt FEEXXFRERREFEPEEEREE)

~A
i a

(F%F%HEXHXFXEXFFA%X%% Continue Edwards Excerpt H¥EEEdiiirfiiiiiriis)

J: Integer;
Time: Integer;:
quit : boolean;

Frocedure Flush_Buffer;

Var Ch:Char;

Begin

Repeat Begin
Ch := RS2Z2_In;
If not RSZ23Z_Avail then Delay(200);
End

Until not RS23Z2Z_Avail;

End; {of Flush_Buffer:’

1
RE_Clearug:

Witn Fhone_Stuff~[I1 do
Becin
RZ_Initialize(Defaulte,Default_Modem,Fhone_Baud,FPhone_Farity,
Fhone_Stor,Fhone_Length);

Echeo:=Fhore_Echo;
Eng:
Last_Tial:=I:
1f Demon_Lial then
Becin
Zatalom.Send _String ! ATI +Char (CRY1;
Flush_Buffer;
Dels,(‘nﬂhf: TGi1ve modem time to resetl
DataCom.Send_String ("ATVIRCGELS7="+Char (Dial _Delay)+Char (CR1)
if Cpen_Windowi(l5,09,&6%,17,Flag_borders, 'Dial’) = O tnem:
ClrSz-:
Wr:fein{ Name :yFPhone_Menu™,Namesil]);
Writein('Attemp HA
Writeln ! "Statyus t)y
Writeln! 'Gtartes :,Get_Timel:

.
Wwriteln!('Dialed 2t 2 7);

Writeln('Elapsed HH

k-ite!{ 'Tptions :EST to abort...any other kev to cycle’);
Flush_Buffer;

Count:=0;

L]
guit = F

alse;

,

i+ Rerp-i1nted with extencive modifications from Advanced Techriaues in
Turbo Fascal by Charles Edwards, by permissior of Sybew, Inc.
Copvright 1987 Sybke:, Imz. All righte recerved,

»HPFEEFFFFFrFLFSF2¥r Cortinue Ecward:z Encerpt FEsiXdsdisisksssisiys)

-

-

(FEFFFFFRERFXHAERXX*X% Continue Edwards Excerpt 9696 36 9696 36 36 969 96 96 06 36 6 K%)

Repeat Eegin
Count:=Count+1;
Time:=0;

GotoXY (12,20
Write{Count)}
GotoXY(12,3);
CirEcl:
Write('Dialing s
GotoXY (12,5} ;
Write(Get_Time);

DataClom.Serd_String(Fhone_Prefix+Phone_Stuff~[11.FPhone_Number
+Char (CR)) ;

Flush_Buffer;
Ji=0;
Delsy (Z000) {Give time to dial the phonel
While not (KeyFressed or RS2IZ_Avail) do
Begin
Delay{lG): {This delay is correct for the FC or XT,
it may have to be changed for an AT or
faster boxl
RHENE
If 3 = 100 ther
Begin
Time:="ime+];
SotoXY i, 6
TirEcl:
Write{Time, Seconds’);
Ji=0g
Erd;
g-d:
I7 veyFrezsed then
Eeg:r
Ch 1= Readrey:
if rev-ressed then
Ch := Readkevy:

= Char (ESC) then

m
"

C
K
guit 1= True;
E
=
=

{# Reprinted with extensive modifications from Advancec Techniques in
Turbo Fascal by Tharlez Edwards, by permission of Sybex. Inc.
Copvright 1987 Svhes., Imc. ALl righte reserved.

EFELE SRS 4244243 Cormtinue Edwards Evcergt #ERRErEtRreriieixers)

274

(€222 ETTITLTIELLLL LT

Continue Edwards Excerpt #%¥##iedEiiiieidiiss)

DataCom.Send_String {(Char (Ch));
Del ay (2000) 3

I*+ RS

End
else

.
.=

=]

Repeaf Ch

AT

s et

Avail then Flush_Buffer;

Eegin

. AT
: ity

= RS

In until Ch Char (LF)

Repeat Begin

untal
Encs
GotoXY il
ClrEcl:
write(5)
1¢ not C
End
Urn Connected
For Count:=1 tc
if Cloze_Window

50
-4 4

&-sCom, Send_St
{F=+2
- . -
cnd: fof Dial _Fheo

Frocedure Dialing Dir

TThie procecurs allows the user to dial or modify any of the entries

the phone arravl
var I,J0:tinteger:
Funct:orn Get_Dial:

Beg:n

if Oper_Window(24

+ Clcse_Window

G
i
Erc:

{%

et _Dial:=Frocese_Window_Menu(Fhone_Menu”

Ars

Ch := RS2ZZ_In;
If Ch > Char (US) then
:=5+Lh;
End
Ch = Char(LF);

2,301

s
L]

onnected then Delay (S000);

OF quit;
10 do Beep (S00):
ther;

ring (Fhorne_Frefiu+Fhone_Stuff~{I].Fhone_Number+
Char (CR) D3

ectorvy

Integer:

L 4

yS,26,Min {6+Fhone_Menu™.lLength,17),Flag_Rorders,
"Phone List”) 0O then:

Ye

ther;

{cf Ge:_Diall

Reprirted with extensive modifications from Advanced Technigues in

Turbo Fascal bv Charles Edwards, by permiscsion of Sybex, Inc.

Copvright 1967 Syber,

FFEFFFEFREFRSFIRRI I P ¥>

A

Inz. [P
Cont:inue Edw

rightz recservec,
ards Edcerpt FRErERRXaiisirrsiass)

ST UD

.

(HEREREREEFEXRERERE%E Continue Edwards Excerpt #EEirEriiiiegiiisiis)

Begin
If Dpen_Windaw(36,5,44,11,Flag_Borders, ‘Choice’) = ¢ theng
1:=Process_Window_Menu(Dial _Menu);
If Close_Window then:
Case I of
0: 3 {ESC...No Choice}
1y2:Begin <{Dial or Demon Dial’
J:=Get_Dial;
I+ J * O then
Dial_Phone(J,I=2);
End;
Z: Begin {Modify}
I:=Get_Dialj;
If I » 0 then
Modify_Entry(I);
End:
4: bBegirn {Delete}
if Fhone_Menu™.Length = 1 then

Begin
1+ Open_Window(45,9,67,12,Flag_Eorders, ") = 0 then;
ClirScr;
Write('Cannct delete last entry)
| AR
14 Close_Window then;
End
elze
Eegin
Ji=Get_Dial;
I+ 1 > 0 then
Eegin

01d_Fhone_Menu:=Fhone_Menu;
0ld_Fhone_Stuff:=Fhone_Stuff;
J:=Fhorie_Menu™,lLength;
GetMem (Phone_Stuff, (J-1)*Sizeof (Fhone_Farams');
GetMem (Fhone_Menu, (J-1)#Sizeof (Fhone_Name)+2);
Move (0ld_Fhone_Menu™,Fhone_Menu™, (I-1)%
Sizeof (Fhone_Name)+2) 4
Move (01d_Fhone_Stuff™,Phone_Stuff~, (I-1)*
Sizecf {Fhone_Farams));
I+ 1 < J then
Begi-
Move (01d_Fhone_Menu™.Names[I+11,
Fhore_Menu™.Namesl[1],
((-1)*Sizect (Fhone_Name));

(» Reprintad with eutensive modifications from Advanced Technigues 1in
Turte FPzscal by Charles Edwarde, by permission of Sybex, Inc.
Zoowrizht 1987 Syber, Inc. All rights reserved.

¥reéfi¥¥agesersiyanryasy Cortinue Edwardz Evcerpt SE¥ziasxétxxasxsisiss)

(FERERXEREERERXERRERE COntinue Edwards Excerpt S¥sdisdiriatsiiisiss)

Move (0ld_Phone_Stuff~[1+1]1,Phone_Stuff~[I1],
(J~1) #Sizeof (Fhone_Farams));
End;
Fhone_Menu“.Length:=J-1;
FreeMem(0ld_Fhone_Menu,J#Sizeof (Phone_Name) +2);
FreeMem(0ld_FPhone_Stuff,J*Sizeof (Phone_Farams));
Save_file(False);
End;
End;
End;
Begin {Add>

o

01d_Fhone_Menu:=Fhone_Menu;
0ld_Phone_Stuf+f:=Fhone_Stuff;
GetMem (Fhone_Stuff, (Fhone_Menu™.Length+1)*

Sizeof (Fhone_Farams));
GetMem (Fhone_Menu, (Phone_Menu™.Length+1) %

Sizeof {Phone_Name)+2);
I:=0id_Fhone_Menu".Length;
Move (Dld_Phone_Menu™,Phone_Menu™, I1%Sizecf (Fhone_Name)+2);
Move (0ld_Fhone_Stuff~,Fhane_Stuff"~,I#Sizeof (Fhone_Farams});
I:=I+1;
Prone_Menu”,lLength:=1;
Fhore_Menu™.Namesl[1l:="...To be provided...
Move (Defaults.Default_Fhone,Fhone_Stuff~[11,

Sizeof (Phone_Farams));

Modify_Entry{I);
FreeMem (01 d_Phone_Menu, (I-1)*Sizeof (Fhone_Name) +2) ;
FreeMem (Dld_Phone_Stuff, (1-1)#S1zeo0f (Fhone_Farams));

($F+7

rn

nd:
End: o
End: {of D

-~

f Casel
1aling_Pirectory:

Prozedure Dirs:
{ Feplacement directory 3
COnNET

Start : integer = 5
Finish : integer = 20;

{(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwarde, by permission of Sybe:, Inc.
Copyrigkt 1987 Svbe:, Inc. All righte reserved.

ERFEERAFERFRF 3 AE%RX COntinue Edwards Excerpt #%:s¥iiiiiixsdixsssx)

(HRFEREFXEXREEXXXEXRXXAXXE Continue Edwards Excerpt 39 3 3 36 3 969 9 9 3 3 36 9 36 96 9 3 ¢)

VAR
error : integer;
Dirlnfo : Dos.SearchRec;
S,
Mask,
Option : string;
Directory_found : Boolean;
FromLine : integer;
Ch : Char;

Begin
GetDir (0,S);
1¥ Open_Window(l,5tart,B80,Finish,Flag_BRorders,S) = 0 then;
ClrScr;
IF Open_Window (§, Start + 5, 70, Start + 7, Flag_Eorders,
‘Mask? #.% is default’”) = O THEN;
GotoXY ¢ 1,1);
Readln (Mask)3

IF Length (Mask) = O THEN Mask 1= "*.#%';

If Close_Window then;

ClrScr;

IF Open_Window (5, Start + 5, 70, Start + 7, Flag_Borders,
‘Options?’)} = O THEN:

GotoXy ¢ 1,1)

Write ('L none = dir Mask), "'w’ " = dir (Mask) /w 1)3
Readln (¢ Option)i

I+ Close_Window then;

™% -
CirScr;

IF Length (Option) = © THEN EEGIN
GotaXy (1,1);
Showlir (Mask, 1, lZ, error)i
END

ELSE CASE Optionlil of
‘w'y ‘W' 1 BEGIN
GotoXy (1,1)i
ViewDir (Mask, I, 13);
END;
END; {CASE>
GotoXY (1, 12)}
Write('Finished...Press any key)i
Ch := Readkey;
1f KeyPressed then Ch := Readkey;
1+ Close_Window then;
End; {of Dirs’

{(# Reprinted with extensive modifications from Advanced Technigues in
Turbo FPascal by Charles Edwards, by permission of Sybeix, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FREERERFEAREFRSRERFA%¥ Corntinue Edwards Excerpt SEErsidsiisdiiiriiss)

278

(RERRXEXFXFREERRRRE¥E COntinue Edwards Excerpt #%Ersisessediiriises)

Procedure Change_DC_Parameters;
{This procedure allows the user to choose from a list of speed,
parity, word length, and stop bit configurations}
Var I:Integer;
Begin
14 Open_Window(67,1,79,23,Flag_Rorders, 'Baud-P-L-S5') = 0 then;
ClrScr;
I1:=FProcess_Window_Menu(Communications_Menu);
I+ I » 0 then
EBegin
RS_Cleanup;
With Communications_Stuffl[I1] do
Begin
RS_Initialize(Current_Com,Speed,FParity,Stop,Length);
End:
End;
If Clocse_Window then:
End: {of Change_DC_Farameters’

Frocedure Hangup:
iThis procedure hangs up the Hayes compatible modem>
Var Ch:Charg
Begin
Repeat Begin
While REZZIZ_Avail do Ch := REZIZ_In;
Delay (5000 ;
Enc
Until not RS2I2_Avail;
Datalom.Send_String(' +++") 3
Delay (2G00) ;
DataCom.Send_String ! ATHG +Char (CR1):
Delay (1000):
While RSZTZ_Avail do Ch := REZIZ_In:
End; {of Hangup>

Frocedure Dos_Shell:

{Thic procedure opers a window and spawns a DOS command processor?
Var Prog,Faram,Dir:String;

I:Integer:

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of ESyber, Inc.
Copyright 1987 Sybex, Inc, All righte reserved.

FRFIURFERERFRFEFREFEY [Contirue Edwercs Evcerpt ##¥¥3RfrdddrrEdiriias)

-y
279

(93636 3 96 3 3 3 I 3 H I X X R R HF Cont1 nue Edwards Ex Cerpt 33 36 3 36 36 30 96 36 -3 3636 36 4 36 3 06 2)

Begin
Frog:=Find_Environment ('COMSFEC ") ;
1+ Length(Frog) <> ¢ then BEGIN

Faram:=" ";
1f Open_Window(40,5,60,8,Flag_PBorders, 'DOS’) = O then;
ClrScr;

Writeln{'Opening Dos Shell ');
Write('Use EXIT when done’);
Ok (") s
If Close_Window then;
I1¥ Open_Window(1,1,80,25,0,") = 0 then;
ClrScr;
GetDir (O,Dir);
Exec (Prog, Faram);
System.ChDlir (Dir);
if doserror <> @ THEN BEGIN
1¥ Oper_Window(40,1,75,3,Flag_Borders, 'DOS Error’) = 0O then;
ClrEol:
Writeln (Error_CodelDosErrorl):
Delay (2000);
1+ Close_Window then;
END;
I+ Close_Window then:
END
ELSE BEGIN
1¥ QCpen_Window(35,10,75,13,Flag_Borders, ‘Errar’} = 0 then;
CirkEol:
Writeln(’ Unakle to open DOS shell ')
Write(*'COMSFEC’ " not found in environment’);
B G I
I+ Close_Window then:

-

Erid;s {of Dos_Shell:

{# Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc, All rights reserved.

FERERERFEERERERFXF42% End Edwards Excerpt #EEXriiiriiiiriiiiiss)

FUNCTION Operator_input (Title : Window_title;
Frompt : FathString) : FathString;

VAR Responcse @ FathString:

en_Window (5, 10, 75, 13, Flag_borderz, Title) = O THEN

280

Writeln ¢ Prompt);
Readln (Response)
Operator_Input := Response;
IF Close_Window THEN;
END
ELSE Dperator_Input := "
END;

FROCEDURE Operator_message (Title : Window_title;
Message : PathString)

BEGIN
IF Open_Window (44, 10, 80, 1Z, Flag_Borders, Title) = 0 THEN BEGIN
ClrScr;
Writeln (Message);
END
END3

FUNCTION Frocess_command : resultg

FALSE;
TRUE:

CONST Receive : boolean
Transmit : boolean

VAR
index : tyte;
Response : StringlZlf:;
Festype : Response_type:
Erro-_msg : Stringl28;
Errtyme : Response_tvpe:
From-t : Stringl2&:;
Hofd o2 buffer:
s21C¢ : boolean:
Server _ID @ byte:
status ¢ result:
Ck ot chars
finiched : boolean;
debugging : boolean:

BEGIN
debugging := FALSE;
finished := FALSE;

iF Open_Window (1, 1, 80, 7, Flag_BRorders, 'Remote Server ') = O THEN;
ClrScr:

Server_ID := Active_Window™.ID:

For index := 1 TG 4 do BEGIN

GotoXy (1, index)i

CASE index 0OF

: Write ('Server Version 1.0');

: Write ('Function ¢ Initializing');:
Write (’'Status : Awaitinag Command’)

vl ory

28!

4 : Write ('Command : ')}
END; { CASE 3
END;

Send := FALSE;
Redirection := true;
{Send_string {(xmodem st test.tst’)
IF Get_Window (Server_ID) THEN;
GOTOXY ¢ 12, 2)3
Write ('Getting Command’);
REFEAT
status := Command_Xfer (Receive, buf, 128);
UNTIL (status = Rx_done) DR (status = Ru_keypressed)i
IF Get_Window (Server_ID) THEN;
Process_command := status;
IF { status = Rx_keypressed) AND NOT (debugging)} THEN BEGIN
IF Close_window THEN;
WHILE keypressed DO
Ch := readkey;
EXIT;
END;
GOTCXY (12, 2);
Write (‘Farsing Command ')
GCTOXY { 12, T);
Write ('Executing Command ")
GOTOXY (12, 4)3

e
[

IF debugging THEN
String_to_btuf (Operator_Imput ('Command’, ‘server command?’),
buf)3
Write (buf_%to_string (buf))3

Farser_main{ buf_to_string (buf), Response, Restype,
Error_msg, Errtype, Frompt)i

CASE Errtype OF

strng : BEGIN
IF tength (Error_msg) > © THEN BEGIN
string_to_buf (Error_msg, buf);
REFEAT

statue := Command_Xfer (Transmit, buf, 128
UNTIL (status = Tx_done)

OR (status = Tx_keypressed)

OR { status = T:_CAN)3
FProcess_command := status;
CASE status OF

282

Tx_keypressed : BEGIN
IF Close_window THEN;
WHILE keypressed DC
Ch := readtey;
finished := TRUE;

EXIT;
END;
- Ts_CAN ¢ BEGIN
finished := TRUE;
END;
EnND: ({CASE}
END; {IF}
END;
file_typs : BEGIN
statue := Xmodm.Respond_by_file (Error_msg);
END;

nothing : BEGIN
END;

END; (CASE:

IF NOT ((firished !} OR (status = T«_CAN J) THEN

CASE Restype OF
strng BEGIN
. string_to_buf (Response, buf)i
REFEAT
status := Command_Xfer (Transmit, buf, 122)i
UNTIL (status = Tx_done)
OR (status = Tx_keypressed)
OR (status = Tu_CAN)3
Frocess_command := status;
CASE status OF
Ty _keypressed : BEGIN
IF Close_window THEN;:
WHILE keypressed DO
Ch := readkey;
finished := TRUE:
EXIT,
END:
. Tx_CAN 1 BEGIN
finished := TRUE;
END:

file_type : BEGIN
status := Xmodm.Respond_by_file (Response);
END;

nothing : BEGIN
END;

END; { CASE ?
IF NOT finished THEN BEGIN
IF Get_Window (Server_ID) THEN;

GOTOXY (12, 2)
Write ('Forwarding Prompt’);
GOTOXY (12, %)3
Write ('Command Complete’);
GOTOXY (1, 4);
Write ('Prompt : °);
GeToXY (1, 11 g
Write (Prompt);
string_to_buf (™M + Frompt, buf)
REFEAT
status := Command_Xfer (Transmit, buf, 128);

UNTIL (status = Tx_done)
OR { status = Tx_keypressed)
Or (status = Tx_CAN);

Send_CAN;
WHILE keypressed DO
Ch := readkey;
Frocess_command := status;
If Get _Window (Server_ILD) THEN;
END;
IF Close_window THEN;
END;

(FEXFXRFEXERRRSRXRRRXRRE Start Edwards Excerpt #ESXsisXeisisssissss)

{ 1 Sep 89 global variables eliminated :

CONST Comme_Meru : integer = 9;
Comms_Fns : ARRAY [1..9] OF STRING [24 1 = (
‘Initialize port Ty
‘Connect to current port ',
‘Disconnect current port °,
"ICOFY file to remote .
"ICOFY file from remote .

{# FReprinted with extensive modifications from Advanced Technigues in
Turbto Fzscal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc., All rights reserved.

HEFEAREFERXAFRFRFAF SR Continue Edwards E,\(Cerpt (S22 TTITIILESZILILTL LD

(%%EHEXEEXXEERXEEXXXE Continue Edwards Excerpt 93636 336 36 96 96 36 6 06 3 36 96 36 36 3 %)

‘Get machine status ’
‘Legin to remote machine °,
‘Reset remote server .
‘(ESC) Exit)3
Comms_Stat_Menu : integer = 7;
Comms_Stat : ARRAY [1..7 1 OF STRING [16 1 = (
‘Comm Port)
‘Speed
‘Word Length
‘Farity
‘Stop Rits
"Function
‘Status

P Y
~— e A . W e

-

FUNCTIDON Comms_function : result;

CONET Receive : boolean =
Transmit : bociean = TRUE:

VAF
I,
Server_ID,
Cave_Window,
Status_Window,
Remote_Window,
Function_Window : Byte:
Verboze : boolean:
guit : boolean:
List : EquipmentlListTvpe;

Frocedure Update_Status (Fn, Status : string)i
VAR J : Integer;

BEGIN
if Get_Window { Btatus_Window) THEN;
FOR & 1= 1 to Comms_Stat_Menu DO BEGIN
GoToXY (18, J };
Clre0L;
WITH Comport [Current_COM 1 DO
CASE J OF
1 ¢ Write (Current_COM):
2 1 Write { Speed_Msg[ORD(Speed) + 1 1);

{# FReprinted with extensive modifications frcm Advanced Techniques in
Turbo Fazcal by Charles Edwards, by permissicn of Sybex, Inc.
Copyright 1987 Sybex, Inc, All rights reserved.

FEFEFRUFFEFERFFEXFEER% CoOntinue Edwards ExCerpi S#Eissdidifisiiedsies)

28%

(HRFEERHHXEFRERRX¥2%% COntinue Edwards Excerpt Sxseiiefiidiiitsseiis)

3 : Write (Length_Msgl Length-41)i
4 : Write (Parity_MsgIMin(ORD(FParity)+1, 2)1);
S : Wite (Stop_Msgl Stop + 11)3
6@ Write (Fr)3
7 : Write { Status);
END; { CASE 7
END;

IF Get_Window (Function_Window } THEN;
END; { Update Status 3}

Frocedure Reset_remote;
{ This procedure forces the remote server to return to the
command receive model
BEGIN
Update_Status ('Resetting’, 'Please wait. . . ')3
Xmodm. Send_CAN;
delay (S00);
Xmodm.Send_CAN;
delay (900},
Xmodm. Send_CAN;
delay (S00);
Xmodm. Send_CAN;
delay (S00);
END3
Function Remote_Commanc (Command : StringlZ28 ! : boolean;
VAR Ch : char;
ctatus ; result:

buf : bufter;

Function stop_case { status : result) : boolean;

BEGIN
stop_case :1= (status = Rx_keypressed)
OF { status = Rx_CAM)i
{0R (status = Rx_donel;’
END;
BEGIN

—

IF Verboce THEN Writeln (’'sending command’);:
string_to_buf (Command , buf);

(* Reprinted with extensive modifications from Advanced Technigues in
TJurbo Pascal bty Charles Edwards, by permission of Sybex, Inc.
Copyright 19€7 Svkex, Inc. All rights reserved.

*FREEEEFERREXARFL¥E5S Continue Edwards ExCerpt SesrsiidsssErisisisss)

286

(#xexrernrerxrrerrirxxr Continue Edwards Excerpt #¥EReeiEiddrisieiisst)

REFEAT
status := Command_Xfer (Transmit, buf, 128);
UNTIL (status = Tx_done) OR (status = Tx_keypressed);
CASE status OF
T:x_CAN,
Tx_keypressed : BEGIN
Update_Status (°‘, ‘Aborted’);
IF Get_Window (Remote_Window) THEN;
WHILE keypressed DO
Ch := readkey;
Femote_Command := FALSE;
END;

T»_done : BEGIN
Xmodm.Monitor _transfers := FALSE:
IF Verbose THEN Writeln ('Getting response’)
REFEAT
ecatus := Get_Response (128)i
UNTIL stop_case { status);
CASE stavus OF

F:_keypressed

—m oy

gholt ke JFEEAN
Weiteln
{'Aborted by user waiting for response’};
delay (10000,

WHILE Keyoressed DO
Ch := readkey; { clear the keypress I
Remot=z_Command := FALSE;

END:
Ry _done,
R _CAN :

BEGIN [normally the signal to turn
the link around for the next
command 2
Femote_Command := TRUEL;
KT .

LRy

END; { CASBE ?
END;
END; { CASE >
END: { Remote Command

{# FReprinted with extensive modifications from Advanced Technigues in
Turbo Fascal bv Charles Edwards, by permission of Sybex, Inc.
Copyright 1927 Sybew, Inc. Al rights reserved.

FFFEEREEFRREEXERFRESF Continue Edwarde Eicerpt S#rExtsxirdiiierisias)

o8z

(FHEFEEHRHEFERERRRRERR CONtIiNUE EQWArds EXCEOrpt #esid s hiiiiiss)
Frocedure Rlogin;
VAR quit : boolean;

Command : Stringl28;
buf : buffer;

BEGIN
quit := FALSE:
Update_Status (‘Login to remote’, "');

IF Open_Window (1, 1, 80, 23, Flag_Borders,
"Remote system - ESC terminates’) = 0 THEN;
ClrScr;
remote Window := Active_Window™.ID;
IF Veroose THEN Writeln (‘synchronizing’);:
Writeln (‘Trying . . 773
Command := "Fraompit’;
REFEAT
IF NOT { Remote_Command (Command)) THEN BEGIN
Writelr ('Command failec’);
guit := TRUE:
END
ELSE BEGIN
Command := Operator_input ("Command ["!<CR:" to quitl’,
‘Command to send to remote °)3

IF (Fos ¢ "'’y Commanag) <> 0) THEN REFEAT
Commsnd := Operator_input ("Quit’, "Buit? In, yl ");
guit := (Command = ‘Y') OR (Command = ‘y')
O ¢ Commanc = ")3
UNTIL (guit OF NOT (Command = ‘'n’) OR NOT (Command = 'N’));
END:

UNTIL guits

{nodm. Moo tor _transfers 1= TRUE;

IF Get_Window { Remote_Window) THEN;

IF Ciose_Windocw THEN; { Ciose the Remote Window 3
END: { Rlogim Z

frocedure Ru_File;
CONST Curnt_COM : String [S 1 = "COMIL";

VAR Dir : Fathetring;
Cammand : St-ingllB:
status @ result:
quit : bhooiean;

{(# Reprinted with extersive modifications from Advanced Techniques in
Turbo Fascal by Charlez Edwards, by permission of Sybex. Inc.
Copyright 19287 Sybes, Inc., All rights reserved.

FREREFEEERRXNS A>3 Continue Edwards Excerpt SEkEkriiitidrrirkss)

288

(HERRFXEXEXEXEEXRE%%*% CoOntinue Edwards Excerpt 9636 33 3¢ 36 3 3 9 9 9 9 3 3 3 3% % %)

Ch : Charg
Settings : byte;
buf : buffer;

BEGIN
quit := false;
Update_Status ('Receive File’', ');

{ Open message window }

IF Open_Window (1, 12, 80, 20, Flag_Borders,
‘Receive File Monitor - press any key to abort’) = O THEN;
CirScr;
Remote_Window := Active_Window™.ID;
Command := Operator_input (‘File to Receive’,
‘Full Fath at remote?’);
Writeln ("Trying . . .)i

string_toc_buf ("zcopy * + Command + ° ° + Curnt _COM, buf)
IF Verbose THEN Writeln (’sending command’);
REFEAT

statues := Command_Xfer (Transmit, buf, 128 };
UNTIL ¢ statuz = Tx_done) DR (status = Tu_keypressed);
WHILE kKeypressed DO

Cr := Reacdkey:
IF statue < Tx_done then BEGIN

Writeln ("Aborted by user on send’);

deleay (1000 .

quit = true;
END
E_SE BEGIN
IF QOpern_Window (1, 1, BO, 25, O, "’7 = O THEN BEGIN

ClrScr;
betDir (G, Dir);
Exec ('zcopy.com’'y ° ° + Curnt_COM);

RS _Cleanup;
RS_Restore (Current COM);
IF Close_Window THEN;
IF DocgError <> O THEN BEGIN
W-iteln ('DOS Error ‘', Error_Code [DOSERROR 1)
Delay (2000);
END;
System.ChDir (Dir)i
END;

(# Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Syte:, Inc.
Copvright 1987 Sybex, Inc. All rights reserved.

FFEFEEFEFFRARFER¥EF42% Continue Edwards Eucerpt SEesrddirtdrdniriiesrs)

289

(RFREXEERXXXRXREXRRE* CoOntinue Edwards Excerpt &5 iiiindiastinss)

IF Verbose THEN Writeln ('Getting response’);
REPEAT
status := Get_Response (128);
UNTIL (status = Ru_keypressed)
DR (status = Rx_CAN);
IF status = Rx_keypressed THEN BEGIN
Writeln ("Aborted by user waiting for response’);
delay (1000);
quit := truei
END;
Xmodm.Monitor_transfers := TRUE;
END;

{ Close message window 2

IF Close_Window THEN;

END; { Rx_File

Procedure Tu_File;

CONET Curnt _COM : String £ 5 1 = ‘COM1 3

VAR Dir : Fathstring;

quit : boolean;
Command : StringlZ8;
L= ¢ Char;

buf : buffer;

status : result;

BEGIN

quit := false:
Update_Status ("Transmit File'y, ');

3,

{ Oper message window X

IF Open_Window ¢ 1, 12, 80, 20, Flag_BRorders,

‘Transmit File Monitor - press any key to abort’) = 0 THEN;
ClrScr;
Remote_Window := Active_Window™.1D;
Command := Operator_input (‘File to Transmit’,

‘Full Path (local)? ")

Writelrn ('Trying . . ')
string_to_buf (‘zcopy ' + Curnt_COM, buf);

Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

AP e RppERpxerreenrsex Continue Edwards Excerpt SErsssssstiskidedsss)

290

(FHXRHEEEXRERERXRAXEE CONtinue Edwards EXcerpt ##eEseeriidensiiiis)

IF Verbose THEN Writeln (‘'sending command’);
REFEAT
status := Command_Xfer (Transmit, buf, 128);
UNTIL (status = Tx_done) OR (status = Tx_keypressed);
WHILE Keypressed DO
Ch := Readkey;
IF status < Tx_done then BEGIN
Writeln ('Aborted by user on send’):
delay (1000);
quit := true;

END
ELSE BEGIN
IF Dpen_Window (1, 1, B0, 25, 0, “°) = O THEN BEGIN
ClrScr;
GetDir (O, Dir)i
Exec (‘zcopy.com °, ° ' + Command + ° ° + Curnt_COM);

RS_Cleanup;
RE_Restore (Current_COM);
IF Close_Window THEN;
IF DosError <> O THEN BEGIN
Writeln ('DOS Error °, Error_Code [DOSERROR 1)
Delay (2000} ;

END;

System.ChDir (Dir):
END;
1= Verbose THEN Writeln ('Getting response’);
REFPEAT

status 1= Get_Response (128);

UNTIL { status = Rx_keypressed)
DR { status = Rx_CAN)3

IF status = Ry_keypressed THEN BEGIN
Writeln ('Abortec by user waiting for response’):
delay (1000);
guit 1= true;

ENC:

¥modm.Manitor_transfers := TRUE;

{IF Close_Window THEN;X

END;

3,

L Close message window 2

IF Close_Window THEN;
END; ¢ Tx_File 3

i# FReprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FEXRFERFEXRFXRXEXX2X¥¥% Continue Edwards Excerpt SEE¥ piiiddiEiiiisss)

291

{HERXREXRXERXERSR¥X¥XF Continue Edwards Excerpt %#Feerfiiririhieiis)

Frocedure Get_Equip;

VAR Command : stringl28;
buf : buffer;

BEGIN
Update_Status ('Getting remote equipment’, "’);
IF Open_Window (1, 1, 80, 23, Flag_Borders,

‘Remote system - ESC terminates’) = O THEN;

ClrScrg
Remote_Window := Active_Window".ID;
IF Verbose THEN Writeln ('synchronizing’);
Writeln ('Trying . . - 7)3
Command := ‘Equip’j
string_to_buf (Command , buf);
IF (Remote_Command (Command)) THEN;
Xmadm.Monitor_transfers := TRUE;
IF Close_Window THEN;

END; { Bet_Equip 7

BEGIN
Verbose 1= TRUE;
IF Open_Window ¢ 1, 2, B8O, Comms_Stat_Menu + 3, Flag_Borders,
‘Current Fort’) = O THEN;

Statuz_Window := Active_Window™.ID;

ClrScr;

FOR I := 1 TC Comms_Stat_Menu DO BEGIN
GoToXY (1, I);
Write (Comms_Stat L I 1, ":7);

END:

1F Open_Window (41, 2, 75, Comms_Menu + 7, Flag_Borders,

‘Functions’) = O THEN BEGIN

Function_Window := Active_Window™.ID;
ClrScr;
Update_Status ("""y "7)i

END

ELSE Writeln {('Can’’'t’);

REPEAT
I := Process_Window_Menu (Comms_Menu)i
quit := false;
CASE I OF

(* Reprinted with extensive modifications from Advanced Technigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

ERFRFFFXEFEXXNRXEF 33 Continue Edwards Excerpt #EEaadiiiieiiiixiss)

292

(expenperpreesrnnnsr Continue Edwards EXCErpt SEREEEErssissiiriess)
01 3 { ESC - do nothing 3

1 : BEGIN {Initialize port 3

Update_Status ('Intializing’,
‘Select new parameters’);
Change_DC_Parameters;
Save_Window := Active_Window"™.ID;
R5_Cleanup;
WITH Comport [Current_COM 1 DO
RS_Initialize (Current_COM, Speed, Parity,
Stop, Length);

Update_Status (‘Completed’,
IF Get_Window (Save_Window) THEN;

END;
2 :+ BEGIN {Connect to port 3
If Oper_Window(40,15,47,18,Flag_Borders, 'Port’) = 0 then;
ClrScry

I:= Process_Window_Menu{Comm_Menu) ;
IF T IN [Coml..Com2] THEN BEGIN
Current_COM := I;
RE_Cleanup;
WITH Comport [Current_COM J DO
RE_Initialize (Current_COM, Speed, Farity, Stop,

Length)3
1+ Close_Window then;:
Update_Statve (‘Connecting’y, *° }j
END
ELSE
Update_Status (‘Can”'t’, 'Fort out of range’)i
END;

BEGIN {(Disconnect current port
Update_Status (‘Disconnecting’, ")3
RE _Cleanur;

r bl

{ Disable these interrupts 3

END;

4 : BEGIN {Fut file to remote 3
Update_Status (‘Putting File’, ");
Tr_Files

END:

(¥ FReprinted with extensive modifications from Advanced Techniques 1in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. Al]l rights reserved.

FERFRFFEXFFRF X1 XEA¥¥> Continue Edwards Excerpt SErisrdiisEisieisiss)

~o-
292

(HHEREXERREXEREFRERERE CONtinue Edwards Excerpt #EEEEEEEEEEEEEtNtets)

BEGIN {Get file from remote ¥
Update_Status (‘Getting File’, ")i

=
-

R« _Files
END3
& : BEGIN {Get machine status 3
Get_Equip;
END;
7 : BEGIN {Login to remote machine I
Rloging
END;
8 : BEGIN {Reset remote machine b
Reset_remote;
Update_Status ('Reset’, '~);
END;
@ : BEGIN {(ESC) Exit 3
I = O3
END:
END: {CASE>
UNTIL (1 = 0) or (quit);

IF Close_Window THEN;

IF Close_Wincdaw THEN;

Comms_Function := T _done;
END: { Comms_Furct:on 3

Frocedure Handle_Alt_Key (B:Byte):
i{This procedure handles the ALT-kKey combinations.

Input: B - the high order byte returned from Check_keyboard

)
B

A

Var I:Integer;
S:iong_String:
status : result:

Begin
Cace B of
Alt_A: Begin {Drive and path’
I1f Open_Window(10,%,50,7,Flag_Borders, 'Fath’) = 0 then;
CirScr;

(# Reprinted with extensive modifications from Advanced Techniques in
Turbe Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc., All rights reserved.

FEETFFIRFEXRFEIRFRFHEEE Conrntinue Edwards E)(Cerpt ETTIILIIILLTTIIZL S LS L 3

(HEFEFREXEXREXERXEX*¥* Continue Edwards Excerpt 3636 36 9 I 3 3 I 96 3 99)

Writeln('Enter new drive and path using format:)
Writeln('D:\Path\Path...)
Readin (S
If Length(S) > O then
System.ChDir (S);
I+ Close_Window then;
End;
Alt_B: Begin {Brealk}
RS_Brealk;
End;
Alt_C: Eegin {Clear screen’
Modify_Entry(0);
End;
Alt_D: Regin {Dial’
Dialing_Directory;
End;
A1t _E: Begin {Echo’
Reep (250) ;
Echo:=not Echo;
End;
ARlt_F: Begin {Data comm parameters]
Change_DC_Parameters;
End;
Alt_G: Begin {Show disk directory?
Dirs;
Ends
Alt H: Begin {Hangup?
Beer (250 ;
Hangups
Trds
Alt_L: Begin {DOS Shelll
Dos_Shell;
End;
Begin
Status := Comms_Function;
End:
Alt_F: Eegin
Status := Comms_Function;

Alt_M

End;
Alt_R,
PgDn : Begin {Receive a fileJ
If Ascii_Download then
Begin

Close(Ascii _File);

(#* Reprinted with extensive modifications from Advanced Technigues in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FEFRERREREREREERSE%%> COntinue Edwards EvCerpt #EEsEderiidedisiesss)

(Rxxxrrirarnritiienst Continue Edwards Excerpt #Eedririidiirfiiesss)

Ascii_Download:=False;
If Open_Window(35,10,66,13,Flag_Borders, ') = 0 then;
ClrScr;
Write('Receipt of file terminated’);
DK)3
I+ Close_Window then;
End
else
Transfer _File(False)y
End;
Alt_S: Eegin {Activate Server’
REPEAT
Status := Process_Command;
UNTIL (status = Rx_keypressed) OR
(status = Tu_keypressed);

End;
AlE_T,
Pglp : Begin {Transmit a filel
Transfer_File(True);
End;

Alt_X: Begin {ExitX
Beer (400} ;
End_Emulator:= TRUE;
If End_Emulator and Ascii_Download then
Close(Ascii_Filel;
End;
Home: Begin {Help?
I+ Open_Window(1,1,29,Min(20,Help_Menu+l),Flag_Borders,
‘Help)= O then:
ClrScr;
:=Frocess_Window_Menu(Help_Menu):
if Close_Window then;
I 1 >0 then
Handle_Alt_key(Help_Index[I1);
Erd;
Begin
Beep (1000) ;
End;
Erd; {of Casel
Build_Status_Line;
End; {of Handle_Alt_Key’

m
v
1
1]

{# Feprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copvright 1987 Sybex, Inc. All rights reserved.

(222X I LTI L LS LS Continue Edwards EXCEFpt (I ITTTILITISLL ST LILLLL D

296

(EREHERRRERR XXX XXRERE COntinue Edwards ExCerpt #EEEididiriiesssss)

Frocedure TTY(Ansi:Boolean);
{This procedure provides basic teletype emulation.
It suppresses NULs and converts GS into a non-destructive backspace?

Const Ansi_Init:Array [0..8] of Char = (#27,'CL",'3",'7','3 4,'4',°0",
‘m _
Colors:Array (0..71 of Char = ('0°,'4",°2','6°,"1",°8",'3",'7")3
Var Ch:Char;
I:Integer;
Regs:Registers;

Frocedure WritelF;

Begin

If not Ansi then
Writeln

else if WhereY = 24 then
Begin
Regs.AX:=%0601;
Reges.CX:=30000;
Regs.DX:=%174F;
Regs.BH:=RBackground shl 4 + Foreground;
Intr ($¥10,Dos.Registers(Regs));
GotoXY (1,24} ;
End

else
Bagin
Fegs.AM: =23
Regs.DlLe=LF;
MESDos (Dos.Registers(Regs))
End;

End; {of WritelLF:

Procedure Writeit(Ch:Char);

Beqgin

I Ansi then
Hegin
Regs. AH: =2;
Regs.DL:=Byte(Ch);
MSDos (Dos.Registers (Regs)
If WhereY » 24 then WritelF;
End

else
Write(Ch);

End; {of Writeitl

(# FReprinted with extensive modifications from Advanced Techniques in
Turbe Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

EX S 2I TSI LSS LS Corntinue Edwards E}(cerpt [TTLITTIIILTE SIS L LN

297

(FEFRXXRERRREEXRRAREX COntinue Edwards ExXCerpt #Eeiksiiiiirsiiiisss)

EBegin
I+ Open_Window(1,1,80,24,0,'°) = 0 then; {Save existing screen’
Build_Status_Line;
If Ansi then Begin

Regs.AH: =93

Regs.DS:=Seg(Ansi_Init);

Regs.DX:=0fs(Ansi_Init);

Ansi_Init[3):=Colors{Foregroundl;

Ansi_Initl6l:=ColorslBackground];

MSDos (Dos.Registers(Regs))
End;
ClrScr;
Repeat Begin

Ch:=Checlk_Auxport;
Case EByte(Ch) of
NUL: 3 {Throw it awayl
GS: Begin {Non-destructive backspace’
I+ WhereX > 1 then
GotoXY (WhereX-1,WhereY)
else if WhereY > 1 then
GotoXY (80 ,WhereY-1)

else
BotoXY(BC,24);
End;
LF: WritelF;
Else Begin
Writeit (Ch);
End;
End;y {of Casel
I:=Check _teyboard;
if 1 <» € then
I+ Loi(l) = O then
Handle_Alt_key(Hi(I))
elee
Begin

Ch:=Char(Lo(I)};
RS232_0ut (Ch);
1f Echo then

Begin

Writeit (Ch)g

I+ Ch = Char (CR) then

WritelF;
If Print then
Begin

(# Reprinted with extensive modifications from Advanced Technigues in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

FEEFEREREERREXXERRA$E CoOntinue Edwards Excerpt #EEEEfiiisasisiisess)

298

(XRFXFEXFXXFXERE*E*%% Continue Edwards Excerpt S#¥addiriiiiiiesiiss)

Write(LST,Ch):
If Ch = Char (CR) then
Write(LST,Char (LF));
End;
End;
End;
End
Until End_Emulator;
If Arsi then
EBegin
Regs.AH: =93
Regs.DS:=8eq(Ansi_Init)}
Regs.DX:=Dfs(Ansi_Init);
Ansi_Initl3):=ColorslLightGrayl;
Arnsi_Initlél:=ColorslBlackl;
MSDos (Dos.Registers (Regs))
End;
I¥ Close_Window then;
End: {of TTY:

{The cuter block of Distrib. It performs &ll necessary initialization
and presentz the user with a list of terminal emulators from which to
select’

Var I:Inteqer:
status : resuvlt;:
command_tail : string:

Begir
GetDiv (0,Current _Fath); (% save current directeory for restoration *)
Init_Window_Info;
If Open_Window(!,1,80,25,0, ") = O then;
Support.Initialize:
IF FaramCovurt » © THEN BEGIN
command_tail := FaramStr (1)i
BumpStrUs (commard_tail)i
END;
iF ¢ (FaramCount > O) AND (command_tail "SERVER "))
OrR (ParamCount = O) THEN

1]

REFEAT
status := Process_command;
UNTIL (status = Tx_keypressed) OR (status = Ri_keypressed)

(¥ Reprinted with extensive modifications from Advanced Techmigues in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Svbe:, Inc. All rightz reserved.

EFFFERBFAFFIEEEER%FF3 Continue Edwards Excerplt FEXSXiisiisisiiisiss)

299

(FxEEFXREEREEExRR#22% Continue Edwards Excerpt
LSE BEGIN { Master or maintenance function ?
End_Emulator:=False;
Emulator:='ANSI "
TTY(Truel;
END;
Repeat
until Close_Window; { Close out all windows

3693 369 36 36 3 3 I 36 3 36 3 3 X)

System.ChDir (Current_Fath); (# restore the previous directory #*)

Enrnd.

(¥ Reprinted with extensive modifications from Advanced Techniques in
Turbo FPascal by CTharles Edwards, by permission of Sybex, Inc.
Copyright 1957 Sybex, Inc. All rights reserved.

HEFFEFRREERRFEE RS X%$ %% Enc Edwards Excerpt

HEEHEEEREEFEXEEFRERRAE R

APPENDIX AB

CONF IGURATION FILE STRUCTURE

A. DISTRIB.CFG FILE STRUCTURE

This is the data structure recorded in the DISTRIB.CFG file when a
configuration is saved. This structure can be accessed from the
Distrib program main menu by pressing the special key combination
Alt-C, for Update Config File.

1. Data Structure for the Default Configuration

Tris is the date <etructure in the Support Unit that 1is
recordad in variable Current of type Default_Type.

Cons* Defaults : Default_Type =
(Default_Name : ‘DISTRIB.CFG'; The file name to

mocifyl

Default_Com 1 The default communications
port

Default_Modem : 23 The default modem port

Default_Fhone ¢ 'S85-12127;

Default_Speed 1 BR&LOG: The default comm port
speec

Default_Farity : None; The default comm port
parity

Default_Length : 8: The default comm port

Defauit_Stop HEB The default comm port

Tefault_Echo:False: Enable Half Duplex

Default_Textcolor : LightGray; The default text
coior

Default_Menucclor:iGreen; The default menuv color

Default_Backcolor:Black; The default background
coler

Default_Prefix: ‘ATDT9,,9,, The default modem
dialing prefix

Default_Delay: 20} The default delay toc wait for
connection

APPENDIX AC

DOCUMENTATION FOR ZICOPY PRDGRAM

This is the documentation for the Zcopy program used for file
transfer (Flanders, 1989, pp. 251 - 2B2).

ICOFY.COM
Command

RBob Flanders
1989 No. 4 (Utilities)

Furpose: Transfers files at high speed, via a serial link, between
machines that do not share a common disk format.

Format: ZCOFY source [targetl [/wll/nlL/ull/0lL/a1L/pll/d]

Remarks: The two machines must be IBM compatible and must be connected
ty a standard "null modem" cable. ZICOPY is executed, with appropriate
parameters, on both machines; & J0-second (default) connect timeout is
orovided.

Jdrn the sending machine both & source (filename plus any needed
drive anc pathi and & target (COM! or COMZ2) must be specified. 2CaFyY
supports the # anc 7 DOS filername "wildcards,"” but it does not permit
reraming files curing transfer.

Or the receiving machine the source is CI™1 or COM2, and the target, if
specified, must be a directory path. (Any needed subdirectories must
he created on the receiving machine before using ZCOFY.)

The optional /w and /n switches operate before cennection is
ectabliched, and so are entered on the ZICOFY command line of each
machine, The /w parameter prolongs the default connection timeout
indefinitely; it can be cancelled with Ctrl-EBreak. The /n parameter
sets the highest bit-per-second (bpes! rate at which ZCOFPY will attempt
to transfer data. [f used, it must be the sam- on both machines. The
default ie /1 (115 kbps). Other acceptable values are /2 through /&
(57.5% kbps, I8.4 kbpes, 19.2 kbpse, 9600 kbps, and 4800 kbps,
respectively). If ICOFY cannot maintain error—-free transfer at a given
trancfer rate, it avtomatically steps down to the next lower speed.

The other optional parameters may be entered on either machine’s
ICOFY command line. The /u (Update! switch permits overwriting
same—name files on the receiving machine without operator confirmation

02

RN P

if the source file is more recent. The /0 (Overwrite) switch

suppresses the confirmation prompt for all files. By default, when
ICOPY receives a disk-full signal, before aborting it tries to find a
smaller selected source file that will fit on the receiving disk. The

/a (Rbort on Full) aborts at the first disk-full indication. The /p
(Fause) switch creates a pause before the transfer operation begins
after the connection between machines has been made.

O

en

~}

1)

a
>

LIST OF REFERENCES

Borland International Inc., Turbo Pascal Owner ‘s Handbook Version
4.0, 1987.

de Boer, R. , {reino@euraivl.uucp:, info-pascal-@vim.brl.mil
message, Subject: Serial Unit in TF4, Message-ID:
797@euraivi.uucp>, 15 Nov 88 14:17:15 GMT.

Defenbaugh, G., "Parents, Children, Redirection, and Fiping with
Das Functions 45H and 46H," Programmer ' 's Journal, v. 6,
November /December 1986.

Duntemann, J., "TURED Fascal at 4," Turbo Technix, V. 1,
November /December 1987.

Edwards, C. C., Advanced Techniques ifi Turbo Fascal, Sybex, Inc.,
1987.

Flanders, R., "File Transfers Fast and Easy,” PC_ Magazine, v. §&,
28 February 1989.

Greco, F.D., "Redirection, or 'Thev Went That-a-wayv’'", Programmer s
Jaournal, v. 7, January/February, 1987.

Greenberg, R.M., "Eeeping Up With the Real World: Speedy Serial

~

1/0 Frocessing," Microscft Journal, v. 2, July 1987,

Greenberg, FR.M., "TSRCOMM, a Replacement for Interrupt 14", source
listing, copyright 1987, Ross M. Greenberg.

Hall, W.V.., "When Turbo Isn't Enough," in Shammas., N.C., Turbo
Fascal Toolbook, M % T Publishing, Inc., 1986.

Hartmarn, R.L., and VYasinsac, A.F., Janus/Ada Implementation of a
Star Cluster Network of Fersonal Computers With Interface to an
Ethernet LAN Allowing Access to DDN Resources, M. S. Thesis, Naval
“pstgraduate School, Monterey, California, June 198&.

Kimura, N, Zabcscnuk@csuna. uucp info-pascal-@vim.brl.mil
message, Subject: Re: TP4.0 Au Froblem, Message-1D:
T1376@csura,uucps, 17 Nov 88 10:Z0:54 GMT.

¥rantz, D., "Christensen Protocols in C," Dr. Dabb’'s Journal,
v. 1C, June 19BS.

Maclermarn, B.J., Frirciples of Programming Larngquages. :nd. ed., CES
College Fublisrting, 1987.

04

17.

18.

19.

—~
20,

—~—
e Y

~

e

Mefford, M.J., "Running Programs Painlessly," PC_Magazine, v. 7,
16 February, 1988.

Microsoft Corporation, MS-DOS Version % Frogrammer ‘s Utility Pack
MS-DOS_ Reference Guide, v. 1, Zenith Data Systems Corporation,
1986.

Microsoft Corporation, Microsoft MS-DOS Version Z.Z21 User 's BGuide,
Zenith Data Systeme Corporation, 1987.

Norton, F., The Feter Norton Frogrammer's Guide toc the IEM FC,
Microsoft Fress, 198%

Frosise, J.; " Instant Access to Directories," FC Magazine, v. 6,
14 April, 1988.

RR Software, Inc., JANUS/Ada Fackage User manuals, 8086 Version 3.2
March 1987, RR Software, 1987

Simrin, S., The Waite Group’'s MS5-DOS Rible, 2nd, ed., Howard W.
Sams % Company, 198€&.

Swar, T., Mastering Turbo Fascal Files, Howard W. Sams & Company,
1987,

Trimble, R., <reid@mpgmtlx.hp.com>, info-pascal@vim.brl.mil message,
Subjiect: Re: xmodem help needed, Mescsage-1D:
CS4TO0OZehpmt I JHFLCOME, 2T Feb 8% 21:03:E85 GMT.

works, 7.V.. JANUS/ADA Software Implementation of a Star Cluster
Locel Area Network of Personal Computers, Master ‘s Thesis, Naval
Fostgraduate School, Monterey, California, December 1986,

08

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-614%5

Library, Code 014Z%
Naval Postgraduate School
Monterey, California 93943-5002

Department Chairman, Code 32
Department of Computer Science
Naval Fostgraduate School
Monterey, California 93943-5000

Computer Techrnclogy Frograms
Code 37

Naval! Postgraduate School
Monterey, California 92943-300Q¢

Frofessor Uno kodres, Code S2ER
Pepartment of Computer Science
Maval Fostgraduate School
Montereyv, California 93943-500C

M-, Nelszon T. Ard

916 Helmsdale Court
Chesapeake, VA& 2I32C }

206

ro

